Home
Class 12
MATHS
Let A={:[(1,x/n),(-x/n,1)]:},"then "lim(...

Let `A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n)` is:

A

(a) `{:[(1,0),(0,1)]:}`

B

(b) `{:[(cosx,sinx),(-sinx,cosx)]:}`

C

(c) `{:[(cosx,-sinx),(sinx,cosx)]:}`

D

(d) `{:[(-1,0),(0,-1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the matrix \( A^n \) as \( n \) approaches infinity, where \[ A = \begin{pmatrix} 1 & \frac{x}{n} \\ -\frac{x}{n} & 1 \end{pmatrix} \] ### Step 1: Evaluate the limit of matrix \( A \) as \( n \to \infty \) We start by evaluating the limit of each element in the matrix \( A \): \[ \lim_{n \to \infty} A = \begin{pmatrix} \lim_{n \to \infty} 1 & \lim_{n \to \infty} \frac{x}{n} \\ \lim_{n \to \infty} -\frac{x}{n} & \lim_{n \to \infty} 1 \end{pmatrix} \] Calculating each limit: - \( \lim_{n \to \infty} 1 = 1 \) - \( \lim_{n \to \infty} \frac{x}{n} = 0 \) - \( \lim_{n \to \infty} -\frac{x}{n} = 0 \) Thus, we have: \[ \lim_{n \to \infty} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] where \( I \) is the identity matrix. ### Step 2: Determine \( A^n \) as \( n \to \infty \) Since we found that \( \lim_{n \to \infty} A = I \), we can analyze \( A^n \): \[ \lim_{n \to \infty} A^n = \lim_{n \to \infty} I^n \] The identity matrix raised to any power is still the identity matrix: \[ I^n = I \] ### Step 3: Conclude the limit Therefore, we conclude: \[ \lim_{n \to \infty} A^n = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Answer The limit as \( n \to \infty \) of \( A^n \) is the identity matrix: \[ \boxed{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (One option is correct)|30 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo)(pin)^(2//n)

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..

Let f : R to R be a real function. The function f is double differentiable. If there exists ninN and p in R such that lim_(x to oo)x^(n)f(x)=p and there exists lim_(x to oo)x^(n+1)f(x) , then lim_(x to oo)x^(n+1)f'(x) is equal to

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

lim_(ntooo) ((n!)^(1//n))/(n) equals

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is