Home
Class 12
MATHS
Let A=[[1,1],[0,1]] and P=[[cos(pi/6),si...

Let `A=[[1,1],[0,1]]` and `P=[[cos(pi/6),sin(pi/6)],[-sin(pi/6),cos(pi/6)]]` and `Q=PAP^T` then `P^T Q^2013 P` is:

A

(a) `{:[(1,2013),(0,1)]:}`

B

(b) `{:[(0,2013),(0,1)]:}`

C

(c) `{:[(2013,0),(0,2013)]:}`

D

(d) `{:[(0,2013),(2013,0)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will go through the steps systematically. ### Step 1: Define the matrices Let \( A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos(\frac{\pi}{6}) & \sin(\frac{\pi}{6}) \\ -\sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{bmatrix} \). ### Step 2: Calculate \( P^T \) The transpose of matrix \( P \) is given by: \[ P^T = \begin{bmatrix} \cos(\frac{\pi}{6}) & -\sin(\frac{\pi}{6}) \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{bmatrix} \] ### Step 3: Calculate \( Q = PAP^T \) Now we compute \( Q \): \[ Q = P A P^T \] First, calculate \( P A \): \[ P A = \begin{bmatrix} \cos(\frac{\pi}{6}) & \sin(\frac{\pi}{6}) \\ -\sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\frac{\pi}{6}) \cdot 1 + \sin(\frac{\pi}{6}) \cdot 0 & \cos(\frac{\pi}{6}) \cdot 1 + \sin(\frac{\pi}{6}) \cdot 1 \\ -\sin(\frac{\pi}{6}) \cdot 1 + \cos(\frac{\pi}{6}) \cdot 0 & -\sin(\frac{\pi}{6}) \cdot 1 + \cos(\frac{\pi}{6}) \cdot 1 \end{bmatrix} \] This simplifies to: \[ P A = \begin{bmatrix} \cos(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) + \sin(\frac{\pi}{6}) \\ -\sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) \end{bmatrix} \] Next, we multiply this result by \( P^T \): \[ Q = \begin{bmatrix} \cos(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) + \sin(\frac{\pi}{6}) \\ -\sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) - \sin(\frac{\pi}{6}) \end{bmatrix} \begin{bmatrix} \cos(\frac{\pi}{6}) & -\sin(\frac{\pi}{6}) \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) \end{bmatrix} \] Calculating this product will give us the matrix \( Q \). ### Step 4: Simplify \( P^T Q^{2013} P \) Since \( Q = PAP^T \), we can express \( Q^{2013} \) as: \[ Q^{2013} = (P A P^T)^{2013} = P A^{2013} P^T \] Thus, we have: \[ P^T Q^{2013} P = P^T (P A^{2013} P^T) P = A^{2013} \] This is because \( P^T P = I \) (the identity matrix). ### Step 5: Calculate \( A^{2013} \) To find \( A^{2013} \), we notice the pattern: \[ A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \] Thus: \[ A^{2013} = \begin{bmatrix} 1 & 2013 \\ 0 & 1 \end{bmatrix} \] ### Conclusion The final result is: \[ P^T Q^{2013} P = A^{2013} = \begin{bmatrix} 1 & 2013 \\ 0 & 1 \end{bmatrix} \] Thus, the answer is option A: \( \begin{bmatrix} 1 & 2013 \\ 0 & 1 \end{bmatrix} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (One option is correct)|30 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Prove that: 3sin(pi/6)sec(pi/3)-4sin((5pi)/6)cot(pi/4)=1

sin^(-1)(sin ((7pi)/6))

If P = [[cos frac(pi)(6), sin frac(pi)(6) ],[-sinfrac(pi)(6),cosfrac(pi)(6)]], A = [[1,1],[0,1]] then P+ A

Solve cos^6(pi/16)+cos^6((3pi)/16)+cos^6((5pi)/16)+cos^6((7pi)/16)

96 sqrt3 sin(pi/48) cos(pi/48) cos(pi/24) cos(pi/12) cos(pi/6) has the value

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

Prove that: sin^2(pi/6)+cos^2(pi/3)-t a n^2pi/4=-1/2

sin^2 pi/6 +cos^2 pi/3 -tan^2 pi/4=-1/2

sin^-1 (sin ((7pi)/6))= (A) (7pi)/6 (B) pi/6 (C) -pi/6 (D) none of these

if z = cos ""pi/4 + i sin""pi/6 then