Home
Class 12
MATHS
The matrix A={:[(lamda(1)^(2),lamda(1)l...

The matrix `A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:}` is idempotent if `lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k` where `lamda_(1),lamda_(2),lamda_(3)` are non-zero real numbers. Then the value of `(10+k)^(2)` is . . .

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \((10 + k)^2\) for the given idempotent matrix \( A \), we will follow these steps: ### Step 1: Understand the Definition of Idempotent Matrix An idempotent matrix \( A \) satisfies the condition: \[ A^2 = A \] This means that when the matrix is multiplied by itself, the result is the matrix itself. ### Step 2: Calculate \( A^2 \) Given the matrix: \[ A = \begin{pmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{pmatrix} \] We need to compute \( A^2 \). The element at position (1,1) in \( A^2 \) can be calculated as: \[ (\lambda_1^2)(\lambda_1^2) + (\lambda_1 \lambda_2)(\lambda_2 \lambda_1) + (\lambda_1 \lambda_3)(\lambda_3 \lambda_1) = \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 \] Continuing this for all elements of \( A^2 \), we can express \( A^2 \) in terms of \( \lambda_1, \lambda_2, \lambda_3 \). ### Step 3: Set \( A^2 = A \) After calculating \( A^2 \), we will set it equal to \( A \) and compare corresponding elements. This will yield a system of equations. ### Step 4: Derive the Equation From the idempotent condition, we will derive the equation: \[ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = k \] This implies that the sum of the squares of the eigenvalues must equal \( k \). ### Step 5: Solve for \( k \) From the derived equations, we will find that: \[ k = 1 \] This is because we need the sum of the squares of the eigenvalues to equal a constant. ### Step 6: Calculate \( (10 + k)^2 \) Now that we have found \( k = 1 \), we can substitute this value into the expression: \[ (10 + k)^2 = (10 + 1)^2 = 11^2 = 121 \] ### Final Answer Thus, the value of \( (10 + k)^2 \) is: \[ \boxed{121} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - H) Multiple True - False Type Questions|2 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

Arrange the following wavelenghts (lamda) of given emission lines of H atoms in increasing order Choose the correct option (1) lamda_(4)ltlamda_(3)ltlamda_(2)ltlamda_(1) (2) lamda_(4)ltlamda_(2)ltlamda_(3)ltlamda_(1) (3) lamda_(1)ltlamda_(2)ltlamda_(3)ltlamda_(4) (4) lamda_(1)ltlamda_(3)ltlamda_(2)ltlamda_(4)

To calculate lamda_(m)^(0) or lamda_(eq)^(0) of weak electrolyte

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

Two parabolas y^(2)=4a(x-lamda_(1))andx^(2)=4a(y-lamda_(2)) always touch each other ( lamda_(1),lamda_(2) being variable parameters). Then their point of contact lies on a

If equation (lamda^(2)-5lamda+6)x^(2)+(lamda^(2)-3lamda+2)x+(lamda^(2)-4)=0 is satisfied by more than two values of x , find the parameter lamda .

Solve for a, lamda if log_lamda acdotlog_(5)lamdacdotlog_(lamda)25=2 .

The wavelength of the first Lyman lines of hydrogen He^(+) and Li^(2+) ions and lamda_(1),lamda_(2)& lamda_(3) the ratio of these wavelengths is

If the following equations x+y-3z = 0, (1+lamda)x + (2+lamda) y - 8z = 0, x-(1+lamda)y + (2+lamda)z = 0 are consistent then the value of lamda is

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda