Home
Class 12
MATHS
Evalute the determinat Delta=|{:(1,3,-1)...

Evalute the determinat `Delta=|{:(1,3,-1),(0,1,2),(1,2,3):}|`

Text Solution

AI Generated Solution

To evaluate the determinant \( \Delta = \begin{vmatrix} 1 & 3 & -1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} \), we will follow the steps outlined below: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & 3 & -1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Evalute the determinants : A=|{:(1,0,1),(0,1,2),(0,0,4):}|

Evaluate the determinant Delta=|(1,2,4),(-1,3,0),(4,1,0)|

Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'=|{:(2,0,-2),(-2,-1,1),(-4,1,3):}| STATEMENT-1 Delta'=Delta^2 . STATEMENT-2 : The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant.

Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (ii) |{:(3,-4,5),(1,1,-2),(2,3,1):}| (iii) |{:(0,1,2),(-1,0,-3),(-2,3,0):}| (iv) |{:(2,-1,-2),(0,2,-1),(3,-5,0):}|

The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is

Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),( 2, 0, 1),( 1, 2 ,3)|

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

Consider the determinant Delta = |[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0 , \ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R . Statement 1: The value of x satisfying Delta=0 are x=1,-1. Statement 2: If |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.

Let Delta=|{:(3,-1,-2),(4,5,6),(2,-3,1):}| Find minor and cofactor of elements of Delta .

The midpoint of the sides of a triangle are (1,5,-1)(0,4,-2)and(2,3,4) . Find its vertices.