Home
Class 12
MATHS
Show that |{:(x,y,z),(2x+2a,2y+2b,2z+2c)...

Show that `|{:(x,y,z),(2x+2a,2y+2b,2z+2c),(a,b,c):}|=0`

Text Solution

AI Generated Solution

To solve the determinant \( |(x, y, z), (2x + 2a, 2y + 2b, 2z + 2c), (a, b, c)| = 0 \), we can follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} x & y & z \\ 2x + 2a & 2y + 2b & 2z + 2c \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Without expanding at any stage, find the value of : |{:(,a,b,c),(,a+2x, b+2y, c+2z),(,x,y,z):}|

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Show that |a b c a+2x b+2y c+2z x y z|=0

If the system of equation {:(,x-2y+z=a),(2x+y-2z=b),and,(x+3y-3z=c):} have at least one solution, then the relationalship between a,b,c is

If x=asecthetacosvarphi,\ \ y=bsecthetasinvarphi and z=ctantheta , show that (x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(c^2)=1

By using properties of determinants. Show that: (i) |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3 (ii) |[x+y+2z, x, y],[ z, y+z+2x, y],[ z, x, z+x+2y]|=2(x+y+z)^3

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

If x = a sec A cos B, y = b sec A sin B and z = c tan A, show that : (x^(2))/ (a^(2)) + (y^(2))/ (b^(2)) - (z^(2))/(c^(2)) = 1