Home
Class 12
MATHS
Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,...

Prove that `|{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)`

Text Solution

Verified by Experts

`Delta=|{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=1/(xyz)|{:(x^2,y^2,z^2),(x^3,y^3,z^3),(xyz,xyz,xyz):}|=(xyz)/(xyz)|{:(x^2,y^2,z^2),(x^3,y^3,z^3),(1,1,1):}|`
`C_1toC_2toC_1,C_3toC_3-C_1`
`|{:(1,0,0),(x^2,y^2-x^2,z^2-x^2),(x^2,y^2-x^2,z^2-x^2):}|`
`=(y-x)(z-x)|{:(y+x,z+x),(y^2+xy+x^2,z^2+zx+x^2):}|`
`(y-z)(z-x)(z-y)[(y+x)(x+y+z)-(y^2+xY+x^2)]`
`=(x-y)(y-z)(xy+yz+zx)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)