Home
Class 12
MATHS
Find minor of element 5 in the determina...

Find minor of element 5 in the determinant `Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|`

Text Solution

AI Generated Solution

To find the minor of the element 5 in the determinant \[ \Delta = \begin{vmatrix} 2 & 4 & 3 \\ 1 & 5 & 2 \\ -1 & 4 & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|12 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate the determinant Delta=|(1,2,4),(-1,3,0),(4,1,0)|

Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 9|

Evaluate the determinants |(2, 4),(-5,-1)|

Find minors and cofactors of all the elements of determinant |{:(-1,2, 3),(-4,5,-2),(6,4, 8):}|

Write minros and cofactros of the elements of the determinants: (i) |{:(1,0,4),(3,5,-1),(0,1,2):}|

Evalute the determinant: : [{:(2,4),(-5,-1):}]

The cofactor of the element '4' in the determinant |(1,3,5,1),(2,3,4,2),(8,0,1,1),(0,2,1,1)| is

Find the determinants of minors of the determinant |{:(1,2,3),(-4,3,6),(2,-7,9):}|

Consider the determinants Delta=|{:(2,-1,3),(1,1,1),(1,-1,1):}|,Delta'=|{:(2,0,-2),(-2,-1,1),(-4,1,3):}| STATEMENT-1 Delta'=Delta^2 . STATEMENT-2 : The determinant formed by the cofactors of the elements of a determinant of order 3 is equal in value to the square of the original determinant.

Find the minors and cofactors of elements '-3^(prime),\ \ ^(prime)5^(prime),\ \ '-1^(prime)&\ '7' in the determinant |{:(2,-3, 1), (4, 0, 5),(-1, 6, 7):}|