Home
Class 12
MATHS
Find the value of k so that A^2=8A+kI wh...

Find the value of k so that `A^2=8A+kI` where `A=[(1,0),(-1,7)].`

A

7

B

-7

C

1

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that \( A^2 = 8A + kI \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ -1 & 7 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ -1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 7 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \( 1 \cdot 1 + 0 \cdot (-1) = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 7 = 0 \) - Second row, first column: \( -1 \cdot 1 + 7 \cdot (-1) = -1 - 7 = -8 \) - Second row, second column: \( -1 \cdot 0 + 7 \cdot 7 = 49 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 0 \\ -8 & 49 \end{pmatrix} \] ### Step 2: Calculate \( 8A \) Next, we calculate \( 8A \): \[ 8A = 8 \cdot \begin{pmatrix} 1 & 0 \\ -1 & 7 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ -8 & 56 \end{pmatrix} \] ### Step 3: Calculate \( kI \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ kI = k \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \] ### Step 4: Set up the equation \( A^2 = 8A + kI \) Now we set up the equation: \[ \begin{pmatrix} 1 & 0 \\ -8 & 49 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ -8 & 56 \end{pmatrix} + \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \] ### Step 5: Combine the right-hand side Combining the matrices on the right-hand side gives: \[ \begin{pmatrix} 8 + k & 0 \\ -8 & 56 + k \end{pmatrix} \] ### Step 6: Equate the matrices Now we equate the corresponding elements from both sides: 1. From the first row, first column: \[ 1 = 8 + k \implies k = 1 - 8 = -7 \] 2. From the second row, second column: \[ 49 = 56 + k \implies k = 49 - 56 = -7 \] Both equations give us the same value for \( k \). ### Final Answer Thus, the value of \( k \) is \[ \boxed{-7} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of k so that PQ will be parallel to RS . P(5, -1), Q(6, 11), R(6,-4k) and S(7, k^2)

Find the value of k so that the lines (1-x)/(3) = (y-2)/(2k) = (z-3)/(2) and (1+x)/(3k) = (y-1)/(1) = (6-z)/(7) are perpendicular to each other.

Find the values of k for which the points (2k ,3k),(1,0),(0,1),a n d(0,0) lie on a circle.

find the values of k so, that the equation (3k+1)x^2+2(k+1)x+1=0 has equal roots . also find the roots in each case.

Find the value of k if the point (1, 2) lies on the curve (k-10)x^2+y^2-(k-7)x-(3k-27)y+11=0

Determine the value of k so that the line joining points A(k,1,-1) and B(2,0,2k) is perpendicular to the line joining the points C(4,2k,1) and D(2,3,2) .

Find the value of m so that the roots of the equation (4-m)x^(2)+(2m+4)x+(8m+1)=0 may be equal.

Find the value of k for which the points are collinear (8,1),(k,-4),(5,2)

Find the value of k so that 8k +4, 6k-2, and 2k + 7 will form an A.P.

Find the values of k so that the area of the triangle with vertices (1, -1), (-4, 2k) and (-k, -5) is 24 sq. units.

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. If A=[{:(11,7),(-13,17):}] then adj(adj A) is

    Text Solution

    |

  2. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  3. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  4. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  5. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  6. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  7. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  8. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  9. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  10. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  11. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  12. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  13. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  14. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  15. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  16. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  17. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  18. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  19. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  20. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |