Home
Class 12
MATHS
The value of the determinant |{:(""^5C0,...

The value of the determinant `|{:(""^5C_0,""^5C_3,14),(""^5C_1,""^5C_4,1),(""^5C_2,""^5C_5,1):}|` is

A

0

B

`-(6!)`

C

80

D

-576

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} {^5C_0} & {^5C_3} & 14 \\ {^5C_1} & {^5C_4} & 1 \\ {^5C_2} & {^5C_5} & 1 \end{vmatrix} \] we will first calculate the binomial coefficients and then evaluate the determinant. ### Step 1: Calculate the Binomial Coefficients - \( {^5C_0} = 1 \) - \( {^5C_1} = 5 \) - \( {^5C_2} = 10 \) - \( {^5C_3} = 10 \) - \( {^5C_4} = 5 \) - \( {^5C_5} = 1 \) Now substituting these values into the determinant, we have: \[ D = \begin{vmatrix} 1 & 10 & 14 \\ 5 & 5 & 1 \\ 10 & 1 & 1 \end{vmatrix} \] ### Step 2: Evaluate the Determinant We can use the method of cofactor expansion along the first row: \[ D = 1 \cdot \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix} - 10 \cdot \begin{vmatrix} 5 & 1 \\ 10 & 1 \end{vmatrix} + 14 \cdot \begin{vmatrix} 5 & 5 \\ 10 & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix} = (5 \cdot 1) - (1 \cdot 1) = 5 - 1 = 4 \] 2. For the second determinant: \[ \begin{vmatrix} 5 & 1 \\ 10 & 1 \end{vmatrix} = (5 \cdot 1) - (1 \cdot 10) = 5 - 10 = -5 \] 3. For the third determinant: \[ \begin{vmatrix} 5 & 5 \\ 10 & 1 \end{vmatrix} = (5 \cdot 1) - (5 \cdot 10) = 5 - 50 = -45 \] ### Step 4: Substitute Back into the Determinant Now substituting these values back into the expression for \( D \): \[ D = 1 \cdot 4 - 10 \cdot (-5) + 14 \cdot (-45) \] Calculating each term: \[ D = 4 + 50 - 630 \] \[ D = 54 - 630 = -576 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{-576} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The value of ((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51)) is :

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

Verify that ""^(9)C_(5)+""^(9)C_(4)=""^(10)C_(5)

Find the value of 5C_3 + 4C_2

The sum of the series ""^(4)C_(0) + ""^(5)C_(1) x + ""^(6)C_(2) x^(2)+""^(7)C_(3)x^(3) +... to infty , is

""^(15)C_(0)*""^(5)C_(5)+""^(15)C_(1)*""^(5)C_(4)+""^(15)C_(2)*""^(5)C_(3)+""^(15)C_(3)*""^(5)C_(2)+""^(15)C_(4)*""^(5)C_(1) is equal to :

""^3C_0-""^4C_1*1/2 + ""^5C_2.(1/2)^2 - ""^6C_3.(1/2)^3+….. to oo terms :

The value of 1^2.C_1 + 3^2.C_3 + 5^2.C_5 + ... is

The coefficient of x^50 in the polynomial (x + ^50C_0)(x +3.^5C_1) (x +5.^5C_2).....(x + (2n + 1) ^5C_50) , is

Prove that: .^2C_1+^3C_1+^4C_1=^5C_3-1

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |