Home
Class 12
MATHS
If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):...

If `Delta_1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta_2=|{:(4,x+5,3),(7,x+12,4),(-5,x-1,7):}|` such that `Delta_1+Delta_2=0,` then

A

`x=5`

B

x has no real value

C

`x=0`

D

`x=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and use the condition that \( \Delta_1 + \Delta_2 = 0 \). ### Step 1: Calculate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} 10 & 4 & 3 \\ 17 & 7 & 4 \\ 4 & -5 & 7 \end{vmatrix} \] To find \( \Delta_1 \), we can use the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] In our case: - \( a = 10, b = 4, c = 3 \) - \( d = 17, e = 7, f = 4 \) - \( g = 4, h = -5, i = 7 \) Calculating \( \Delta_1 \): \[ \Delta_1 = 10 \begin{vmatrix} 7 & 4 \\ -5 & 7 \end{vmatrix} - 4 \begin{vmatrix} 17 & 4 \\ 4 & 7 \end{vmatrix} + 3 \begin{vmatrix} 17 & 7 \\ 4 & -5 \end{vmatrix} \] Calculating the smaller 2x2 determinants: 1. \( \begin{vmatrix} 7 & 4 \\ -5 & 7 \end{vmatrix} = (7 \cdot 7) - (4 \cdot -5) = 49 + 20 = 69 \) 2. \( \begin{vmatrix} 17 & 4 \\ 4 & 7 \end{vmatrix} = (17 \cdot 7) - (4 \cdot 4) = 119 - 16 = 103 \) 3. \( \begin{vmatrix} 17 & 7 \\ 4 & -5 \end{vmatrix} = (17 \cdot -5) - (7 \cdot 4) = -85 - 28 = -113 \) Now substituting back: \[ \Delta_1 = 10(69) - 4(103) + 3(-113) \] \[ = 690 - 412 - 339 \] \[ = 690 - 751 = -61 \] ### Step 2: Calculate \( \Delta_2 \) Given: \[ \Delta_2 = \begin{vmatrix} 4 & x+5 & 3 \\ 7 & x+12 & 4 \\ -5 & x-1 & 7 \end{vmatrix} \] Using the same determinant formula: \[ \Delta_2 = 4 \begin{vmatrix} x+12 & 4 \\ x-1 & 7 \end{vmatrix} - (x+5) \begin{vmatrix} 7 & 4 \\ -5 & 7 \end{vmatrix} + 3 \begin{vmatrix} 7 & x+12 \\ -5 & x-1 \end{vmatrix} \] Calculating the smaller 2x2 determinants: 1. \( \begin{vmatrix} x+12 & 4 \\ x-1 & 7 \end{vmatrix} = (x+12) \cdot 7 - 4 \cdot (x-1) = 7x + 84 - 4x + 4 = 3x + 88 \) 2. We already calculated \( \begin{vmatrix} 7 & 4 \\ -5 & 7 \end{vmatrix} = 69 \) 3. \( \begin{vmatrix} 7 & x+12 \\ -5 & x-1 \end{vmatrix} = 7(x-1) - (x+12)(-5) = 7x - 7 + 5x + 60 = 12x + 53 \) Now substituting back: \[ \Delta_2 = 4(3x + 88) - (x + 5)(69) + 3(12x + 53) \] \[ = 12x + 352 - 69x - 345 + 36x + 159 \] \[ = (12x - 69x + 36x) + (352 - 345 + 159) \] \[ = -21x + 166 \] ### Step 3: Set up the equation \( \Delta_1 + \Delta_2 = 0 \) From the problem statement: \[ \Delta_1 + \Delta_2 = 0 \implies -61 + (-21x + 166) = 0 \] \[ -21x + 105 = 0 \] \[ 21x = 105 \] \[ x = 5 \] ### Final Answer The value of \( x \) is \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta_(2) = |(x,2,7),(x +1,3,-5),(x,7,4)| , then the value of x for which Delta_(1) + Delta_(2) = 0 , is

Solve for x:|{:(x,x),(8,x):}| = |{:(7,-2,1),(0,3,-1),(5,-4,2):}| .

Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(7)-x),(,a^(7)-a,a^(8)-x,a^(9)-x):}| then the value of Delta_(1)-Delta_(2) is (A) 0 (B) (a^(3)-1)(a^(6)-1)(a^(9)-1) (C) (a^(3)+1)(a^(6)+1)(a^(9)+1) (D) a^(15)-1

if Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(5,,6,,7,,z),(x,,y,,z,,0):}|=0 then

Verify Property 1 for Delta=|(2,-3 ,5),(6, 0 ,4 ),(1,5,-7)|

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If A=[(2,3),(5,7)], B=[(0,4),(-1,7)]andC=[(1,0),(-1,4)] find AC+B^(2)-10C .

A = {1,3,5,7}, B = {1,2,3,4), find A Delta B.

If 2|(3, 4),( 5,x)|+|(1,y),(0, 1)|=|(7, 0),(10, 5)| , find x-y .

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |