Home
Class 12
MATHS
The value of |{:(x,x^2-yz,1),(y,y^2-zx,1...

The value of `|{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}|` is

A

1

B

-1

C

0

D

#REF!

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} x & x^2 - yz & 1 \\ y & y^2 - zx & 1 \\ z & z^2 - xy & 1 \end{vmatrix} \] we can follow these steps: ### Step 1: Rewrite the Determinant We can express the determinant as: \[ D = \begin{vmatrix} x & x^2 - yz & 1 \\ y & y^2 - zx & 1 \\ z & z^2 - xy & 1 \end{vmatrix} \] ### Step 2: Perform Column Operations We can perform column operations to simplify the determinant. Let's subtract the third column from the second column: \[ D = \begin{vmatrix} x & (x^2 - yz) - 1 & 1 \\ y & (y^2 - zx) - 1 & 1 \\ z & (z^2 - xy) - 1 & 1 \end{vmatrix} \] This gives us: \[ D = \begin{vmatrix} x & x^2 - yz - 1 & 1 \\ y & y^2 - zx - 1 & 1 \\ z & z^2 - xy - 1 & 1 \end{vmatrix} \] ### Step 3: Factor Out Common Terms Now, we can factor out the common terms from the second column: \[ D = \begin{vmatrix} x & x^2 - yz - 1 & 1 \\ y & y^2 - zx - 1 & 1 \\ z & z^2 - xy - 1 & 1 \end{vmatrix} \] ### Step 4: Check for Identical Rows Now, we can see if we can manipulate the determinant further. Notice that if we perform the operation of switching columns, we can see that the determinant can become identical to itself: If we switch the second and third columns, we have: \[ D = \begin{vmatrix} x & 1 & x^2 - yz - 1 \\ y & 1 & y^2 - zx - 1 \\ z & 1 & z^2 - xy - 1 \end{vmatrix} \] ### Step 5: Identify Identical Determinants Now, if we switch the first column with the second column, we get: \[ D = \begin{vmatrix} 1 & x & x^2 - yz - 1 \\ 1 & y & y^2 - zx - 1 \\ 1 & z & z^2 - xy - 1 \end{vmatrix} \] ### Step 6: Conclusion Since we have two identical determinants, the value of the determinant must be zero: \[ D = 0 \] Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

If Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

The value of {(x-y)^3+(y-z)^3+(z-x)^3}/{9(x-y)(y-z)(z-x)} (1) 0 (2) 1/9 (3) 1/3 (4) 1

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |