Home
Class 12
MATHS
The value of the determinant |(-(2^5 +...

The value of the determinant `|(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10-1,-(2^5-1)^2,1/(2^5+1)),(1/(2^5-1),(1/(2^5+1),-1/(2^10-1)^2) )|`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} -(2^5 + 1)^2 & 2^{10} - 1 & \frac{1}{2^5 - 1} \\ 2^{10} - 1 & -(2^5 - 1)^2 & \frac{1}{2^5 + 1} \\ \frac{1}{2^5 - 1} & \frac{1}{2^5 + 1} & -\frac{1}{(2^{10} - 1)^2} \end{vmatrix} \] we will follow these steps: ### Step 1: Rewrite the Determinant We can rewrite the determinant for clarity: \[ D = \begin{vmatrix} -(2^5 + 1)^2 & 2^{10} - 1 & \frac{1}{2^5 - 1} \\ 2^{10} - 1 & -(2^5 - 1)^2 & \frac{1}{2^5 + 1} \\ \frac{1}{2^5 - 1} & \frac{1}{2^5 + 1} & -\frac{1}{(2^{10} - 1)^2} \end{vmatrix} \] ### Step 2: Calculate the Determinant Using the determinant formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \(a, b, c\) are the elements of the first row, and \(d, e, f, g, h, i\) are the elements of the second and third rows respectively. Substituting the values: - \(a = -(2^5 + 1)^2\) - \(b = 2^{10} - 1\) - \(c = \frac{1}{2^5 - 1}\) - \(d = 2^{10} - 1\) - \(e = -(2^5 - 1)^2\) - \(f = \frac{1}{2^5 + 1}\) - \(g = \frac{1}{2^5 - 1}\) - \(h = \frac{1}{2^5 + 1}\) - \(i = -\frac{1}{(2^{10} - 1)^2}\) Calculating \(ei - fh\), \(di - fg\), and \(dh - eg\): 1. **Calculate \(ei - fh\)**: \[ ei = -(2^5 - 1)^2 \cdot -\frac{1}{(2^{10} - 1)^2} = \frac{(2^5 - 1)^2}{(2^{10} - 1)^2} \] \[ fh = \frac{1}{2^5 + 1} \cdot \frac{1}{2^5 - 1} = \frac{1}{(2^5 + 1)(2^5 - 1)} \] Thus, \(ei - fh = \frac{(2^5 - 1)^2}{(2^{10} - 1)^2} - \frac{1}{(2^5 + 1)(2^5 - 1)}\). 2. **Calculate \(di - fg\)**: \[ di = (2^{10} - 1) \cdot -\frac{1}{(2^{10} - 1)^2} = -\frac{1}{2^{10} - 1} \] \[ fg = \frac{1}{2^5 + 1} \cdot \frac{1}{2^5 - 1} \] Thus, \(di - fg = -\frac{1}{2^{10} - 1} - \frac{1}{(2^5 + 1)(2^5 - 1)}\). 3. **Calculate \(dh - eg\)**: \[ dh = (2^{10} - 1) \cdot \frac{1}{2^5 + 1} \] \[ eg = -(2^5 - 1)^2 \cdot \frac{1}{2^5 - 1} = -(2^5 - 1) \] Thus, \(dh - eg = (2^{10} - 1) \cdot \frac{1}{2^5 + 1} + (2^5 - 1)\). ### Step 3: Substitute Back into the Determinant Formula After calculating the necessary components, substitute back into the determinant formula and simplify. ### Step 4: Final Calculation After performing all calculations and simplifications, we find that the determinant \(D\) simplifies to 4. ### Conclusion Thus, the value of the determinant is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

(1/4)^(-10)xx(2/5)^(-10)

Find: 2(1)/(2)-1(5)/(18)

The cofactor of the element '4' in the determinant |(1,3,5,1),(2,3,4,2),(8,0,1,1),(0,2,1,1)| is

The value of {(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)} ,is

Find: 1(2)/(5)+2(1)/(3)

The value of (1-tan^2 1 5^(@))/(1+tan^2 1 5^(@)) is

The sum of the infinite series 1+(1+1/5)(1/2)+(1+1/5+1/(5^2))(1/(2^2))+...

Find minor of element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |