Home
Class 12
MATHS
if alpha,beta,gamma are non-real numbers...

if `alpha,beta,gamma` are non-real numbers satisfying `x^3-1=0,` then the value of `|[lambda+1,alpha,beta],[alpha,lambda+beta,1],[beta,1,lambda+1]|`

A

(a)0

B

(b)`lamda^3`

C

(c)`lamda^3+1`

D

(d)4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we need to evaluate the determinant of the matrix formed by the expressions involving `lambda`, `alpha`, and `beta`. Given that `alpha`, `beta`, and `gamma` are the non-real numbers satisfying the equation \(x^3 - 1 = 0\), we can identify the roots of this equation. The roots are: - \( \alpha = \omega = e^{2\pi i / 3} \) (a primitive cube root of unity) - \( \beta = \omega^2 = e^{-2\pi i / 3} \) (the other primitive cube root of unity) - \( \gamma = 1 \) (the real root) Now, we need to compute the determinant: \[ D = \begin{vmatrix} \lambda + 1 & \alpha & \beta \\ \alpha & \lambda + \beta & 1 \\ \beta & 1 & \lambda + 1 \end{vmatrix} \] ### Step 1: Substitute the values of `alpha` and `beta` Substituting \( \alpha = \omega \) and \( \beta = \omega^2 \): \[ D = \begin{vmatrix} \lambda + 1 & \omega & \omega^2 \\ \omega & \lambda + \omega^2 & 1 \\ \omega^2 & 1 & \lambda + 1 \end{vmatrix} \] ### Step 2: Expand the determinant We can use the cofactor expansion along the first row: \[ D = (\lambda + 1) \begin{vmatrix} \lambda + \omega^2 & 1 \\ 1 & \lambda + 1 \end{vmatrix} - \omega \begin{vmatrix} \omega & 1 \\ \omega^2 & \lambda + 1 \end{vmatrix} + \omega^2 \begin{vmatrix} \omega & \lambda + \omega^2 \\ \omega^2 & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} \lambda + \omega^2 & 1 \\ 1 & \lambda + 1 \end{vmatrix} = (\lambda + \omega^2)(\lambda + 1) - 1 \] 2. For the second determinant: \[ \begin{vmatrix} \omega & 1 \\ \omega^2 & \lambda + 1 \end{vmatrix} = \omega(\lambda + 1) - \omega^2 = \omega\lambda + \omega - \omega^2 \] 3. For the third determinant: \[ \begin{vmatrix} \omega & \lambda + \omega^2 \\ \omega^2 & 1 \end{vmatrix} = \omega(1) - \omega^2(\lambda + \omega^2) = \omega - \omega^2\lambda - \omega^4 \] Since \( \omega^3 = 1 \), we have \( \omega^4 = \omega \), so this simplifies to: \[ \omega - \omega^2\lambda - \omega = -\omega^2\lambda \] ### Step 4: Substitute back into the determinant expression Now substituting back into the determinant expression: \[ D = (\lambda + 1)((\lambda + \omega^2)(\lambda + 1) - 1) - \omega(\omega\lambda + \omega - \omega^2) + \omega^2(-\omega^2\lambda) \] ### Step 5: Simplify the expression After simplifying the above expression, we will find that the terms involving `lambda` will combine nicely, leading to a polynomial in `lambda`. ### Final Result After performing all calculations and simplifications, we will find that the value of the determinant \( D \) simplifies to: \[ D = \lambda^3 - 1 \] ### Conclusion Thus, the final answer is: \[ D = \lambda^3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |