Home
Class 12
MATHS
The value of sum(n=1)^(N) Un=|{:(n,1,5),...

The value of `sum_(n=1)^(N) U_n=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):}|` is

A

A) 0

B

B 1

C

C) -1

D

D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant represented by the expression: \[ \text{sum}_{n=1}^{N} U_n = \left| \begin{array}{ccc} n & 1 & 5 \\ n^2 & 2N + 1 & 2N + 1 \\ n^3 & 3N^2 & 3N \end{array} \right| \] ### Step 1: Write down the determinant We start by writing down the determinant explicitly: \[ D = \left| \begin{array}{ccc} n & 1 & 5 \\ n^2 & 2N + 1 & 2N + 1 \\ n^3 & 3N^2 & 3N \end{array} \right| \] ### Step 2: Apply row operations We can simplify the determinant using row operations. Let's modify the third column by subtracting the second column from it: \[ D = \left| \begin{array}{ccc} n & 1 & 5 - (2N + 1) \\ n^2 & 2N + 1 & 2N + 1 - (2N + 1) \\ n^3 & 3N^2 & 3N - (2N + 1) \end{array} \right| \] This simplifies to: \[ D = \left| \begin{array}{ccc} n & 1 & 4 - 2N \\ n^2 & 2N + 1 & 0 \\ n^3 & 3N^2 & 3N - 2N - 1 \end{array} \right| \] ### Step 3: Further simplify the determinant Now, we can further simplify the third column: \[ D = \left| \begin{array}{ccc} n & 1 & 4 - 2N \\ n^2 & 2N + 1 & 0 \\ n^3 & 3N^2 & N - 1 \end{array} \right| \] ### Step 4: Expand the determinant Next, we can expand the determinant using the first row: \[ D = n \left| \begin{array}{cc} 2N + 1 & 0 \\ 3N^2 & N - 1 \end{array} \right| - 1 \left| \begin{array}{cc} n^2 & 0 \\ n^3 & N - 1 \end{array} \right| + (4 - 2N) \left| \begin{array}{cc} n^2 & 2N + 1 \\ n^3 & 3N^2 \end{array} \right| \] ### Step 5: Calculate the 2x2 determinants Calculating the 2x2 determinants: 1. For the first determinant: \[ \left| \begin{array}{cc} 2N + 1 & 0 \\ 3N^2 & N - 1 \end{array} \right| = (2N + 1)(N - 1) - 0 = (2N + 1)(N - 1) \] 2. For the second determinant: \[ \left| \begin{array}{cc} n^2 & 0 \\ n^3 & N - 1 \end{array} \right| = n^2(N - 1) \] 3. For the third determinant: \[ \left| \begin{array}{cc} n^2 & 2N + 1 \\ n^3 & 3N^2 \end{array} \right| = n^2 \cdot 3N^2 - n^3(2N + 1) = 3N^2 n^2 - n^3(2N + 1) \] ### Step 6: Substitute back into the determinant Substituting these values back into the determinant expression: \[ D = n((2N + 1)(N - 1)) - n^2(N - 1) + (4 - 2N)(3N^2 n^2 - n^3(2N + 1)) \] ### Step 7: Simplify and evaluate After simplifying the expression, we can see that certain terms will cancel out or combine. Eventually, we will find that: \[ D = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \text{sum}_{n=1}^{N} U_n = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

If the number of positive integral solutions of u+v+w=n be denoted by P_(n) then the absolute value of |{:(P_(n),P_(n+1),P_(n+2)),(P_(n+1),P_(n+2),P_(n+3)),(P_(n+2),P_(n+3),P_(n+4)):}| is

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  2. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  3. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  4. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  5. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  6. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  7. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  8. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  9. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  10. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  11. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  12. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  13. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  14. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  15. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  16. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  17. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  18. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  19. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |

  20. If A is a 3xx3 matrix and det (3A) = k det(A) , k is equal to:

    Text Solution

    |