Home
Class 12
MATHS
Show that the line 3x - 4y -c = 0 will m...

Show that the line `3x - 4y -c = 0` will meet the circle having centre at (2, 4) and the radius 5 in real and distinct points if `-35 lt c lt 15`.

Text Solution

AI Generated Solution

To show that the line \(3x - 4y - c = 0\) meets the circle with center at \((2, 4)\) and radius \(5\) in real and distinct points when \(-35 < c < 15\), we will follow these steps: ### Step 1: Write the equation of the circle The equation of a circle with center \((h, k)\) and radius \(r\) is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] For our circle, the center is \((2, 4)\) and the radius is \(5\). Thus, the equation of the circle is: ...
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try ypurself|42 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

The line 3x -4y = k will cut the circle x^(2) + y^(2) -4x -8y -5 = 0 at distinct points if

Find the equation of the circle having centre at (3,-4) and touching the line 5x+12 y-12=0.

Find the equation of the circle having centre at (3,-4) and touching the line 5x+12 y-12=0.

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

Show that the line 3x+4y +20=0 touches the circle x^(2) + y^(2) =16 and find the point of contact

If the lines 3x-4y+4=0 and 6x-8y-7=0 are tangents to a circle, then find the radius of the circle.

If the lines 3x-4y+4=0 and 6x-8y-7=0 are tangents to a circle, then find the radius of the circle.

If the lines 3x-4y+4=0 and 6x-8y-7=0 are tangents to a circle, then find the radius of the circle.

If the lines 3x-4y+4=0 and 6x-8y-7=0 are tangents to a circle, then find the radius of the circle.

The line 2x - y + 1 = 0 is tangent to the circle at the point (2,5) and the centre of the circles lies on x-2y = 4. The radius of the circle is :

AAKASH INSTITUTE ENGLISH-CONIC SECTIONS-SECTION - J ( Aakash Challengers Questions )
  1. Show that the line 3x - 4y -c = 0 will meet the circle having centre a...

    Text Solution

    |

  2. Find the angle between the two tangents from the origin to the circle ...

    Text Solution

    |

  3. The area of the triangle formed by the tangent at (3, 4) to the circle...

    Text Solution

    |

  4. If P(1), P(2), P(3) are the perimeters of the three circles, S(1) :...

    Text Solution

    |

  5. If (1, a), (b, 2) are conjugate points with repect to the circle x^(2)...

    Text Solution

    |

  6. Area of the equilateral triangle inscribed in the circle x^(2) + y^(2)...

    Text Solution

    |

  7. A solid sphere of radius R/2 is cut out of a solid sphere of radius R ...

    Text Solution

    |

  8. The range of parameter ' a ' for which the variable line y=2x+a lies b...

    Text Solution

    |

  9. A planet of mass m moves along an ellipse around the sun (mass M) so t...

    Text Solution

    |

  10. There are exactly two points on the ellipse x^2/a^2+y^2/b^2=1,whose di...

    Text Solution

    |

  11. The line2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, tou...

    Text Solution

    |

  12. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  13. A rectangular hyperbola whose centre is C is cut by any circle of radi...

    Text Solution

    |

  14. Let P be a point on the hyperbola x^2-y^2=a^2, where a is a parameter,...

    Text Solution

    |

  15. Tangents are drawn from the points on a tangent of the hyperbola x^2-y...

    Text Solution

    |

  16. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  17. Let F(x) = (1+b^(2))x^(2) + 2bx + 1. The minimum value of F(x) is the ...

    Text Solution

    |