Home
Class 12
MATHS
Find the locus of the middle points of t...

Find the locus of the middle points of the chords of the parabola `y^(2) = 4x` which touch the parabola `x^(2) = -8y`.

Text Solution

AI Generated Solution

To find the locus of the midpoints of the chords of the parabola \( y^2 = 4x \) that touch the parabola \( x^2 = -8y \), we will follow these steps: ### Step 1: Understand the Parabolas The first parabola is \( y^2 = 4x \), which opens to the right. The second parabola is \( x^2 = -8y \), which opens downwards. ### Step 2: Equation of the Chord For a parabola \( y^2 = 4ax \), the equation of the chord with midpoint \( (h, k) \) can be expressed as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try ypurself|42 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

The locus of the middle points of the focal chords of the parabola, y 2 =4x

The locus of the middle points of the focal chords of the parabola, y^2=4x is:

The locus of the middle points of the focal chords of the parabola, y^2=4x is:

The locus of the middle points of normal chords of the parabola y^2 = 4ax is-

The locus of the midpoints of the focal chords of the parabola y^(2)=4ax is

The locus of the middle points of the chords of the parabola y^(2)=4ax which pass through the focus, is

The locus of the middle points of the chords of the parabola y^(2)=4ax , which passes through the origin is :

Find the locus of the midpoint of normal chord of parabola y^2=4ax

The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=4 , that touches the parabola y^(2)=8x is

Find the locus of the midpoint of normal chord of parabola y^2=4a xdot

AAKASH INSTITUTE ENGLISH-CONIC SECTIONS-SECTION - J ( Aakash Challengers Questions )
  1. Find the locus of the middle points of the chords of the parabola y^(2...

    Text Solution

    |

  2. Find the angle between the two tangents from the origin to the circle ...

    Text Solution

    |

  3. The area of the triangle formed by the tangent at (3, 4) to the circle...

    Text Solution

    |

  4. If P(1), P(2), P(3) are the perimeters of the three circles, S(1) :...

    Text Solution

    |

  5. If (1, a), (b, 2) are conjugate points with repect to the circle x^(2)...

    Text Solution

    |

  6. Area of the equilateral triangle inscribed in the circle x^(2) + y^(2)...

    Text Solution

    |

  7. A solid sphere of radius R/2 is cut out of a solid sphere of radius R ...

    Text Solution

    |

  8. The range of parameter ' a ' for which the variable line y=2x+a lies b...

    Text Solution

    |

  9. A planet of mass m moves along an ellipse around the sun (mass M) so t...

    Text Solution

    |

  10. There are exactly two points on the ellipse x^2/a^2+y^2/b^2=1,whose di...

    Text Solution

    |

  11. The line2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, tou...

    Text Solution

    |

  12. A point P moves such that the sum of the slopes of the normals drawn f...

    Text Solution

    |

  13. A rectangular hyperbola whose centre is C is cut by any circle of radi...

    Text Solution

    |

  14. Let P be a point on the hyperbola x^2-y^2=a^2, where a is a parameter,...

    Text Solution

    |

  15. Tangents are drawn from the points on a tangent of the hyperbola x^2-y...

    Text Solution

    |

  16. A tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 cuts the ellipse ...

    Text Solution

    |

  17. Let F(x) = (1+b^(2))x^(2) + 2bx + 1. The minimum value of F(x) is the ...

    Text Solution

    |