Home
Class 12
MATHS
If X={1,2,3,4} , Y={2,3,5,7}, Z={3,6,8,9...

If X={1,2,3,4} , Y={2,3,5,7}, Z={3,6,8,9},W={2,4,8,10}, then

A

`(X Delta Y) Delta (Z Delta W)" is" {1,2,3,5,6,7,9,10}`

B

`(X Delta Z) Delta (Y Delta W)" is" {1,2,3,5,6,7,10}`

C

`(X Delta Y) Delta (Z Delta W)" is" {1,3,10}`

D

`(X Delta Y) Delta (Z Delta W)" is" {1,2,3,4,5,6,7,8,9,10}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the symmetric difference of the sets X, Y, Z, and W as described. Let's break down the solution step by step. ### Step 1: Define the Sets We have the following sets: - \( X = \{1, 2, 3, 4\} \) - \( Y = \{2, 3, 5, 7\} \) - \( Z = \{3, 6, 8, 9\} \) - \( W = \{2, 4, 8, 10\} \) ### Step 2: Calculate \( A = X \Delta Y \) The symmetric difference \( A \) is defined as: \[ A = (X - Y) \cup (Y - X) \] **Calculate \( X - Y \):** - Elements in \( X \) but not in \( Y \): - From \( X \): 1, 2, 3, 4 - From \( Y \): 2, 3 - Thus, \( X - Y = \{1, 4\} \) **Calculate \( Y - X \):** - Elements in \( Y \) but not in \( X \): - From \( Y \): 2, 3, 5, 7 - From \( X \): 2, 3 - Thus, \( Y - X = \{5, 7\} \) **Combine the results:** \[ A = (X - Y) \cup (Y - X) = \{1, 4\} \cup \{5, 7\} = \{1, 4, 5, 7\} \] ### Step 3: Calculate \( B = Z \Delta W \) Now we calculate \( B \): \[ B = (Z - W) \cup (W - Z) \] **Calculate \( Z - W \):** - Elements in \( Z \) but not in \( W \): - From \( Z \): 3, 6, 8, 9 - From \( W \): 2, 4, 8, 10 - Thus, \( Z - W = \{3, 6, 9\} \) **Calculate \( W - Z \):** - Elements in \( W \) but not in \( Z \): - From \( W \): 2, 4, 8, 10 - From \( Z \): 3, 6, 8 - Thus, \( W - Z = \{2, 4, 10\} \) **Combine the results:** \[ B = (Z - W) \cup (W - Z) = \{3, 6, 9\} \cup \{2, 4, 10\} = \{2, 3, 4, 6, 9, 10\} \] ### Step 4: Calculate \( A \Delta B \) Now we find the symmetric difference \( A \Delta B \): \[ A \Delta B = (A - B) \cup (B - A) \] **Calculate \( A - B \):** - Elements in \( A \) but not in \( B \): - From \( A \): 1, 4, 5, 7 - From \( B \): 2, 3, 4, 6, 9, 10 - Thus, \( A - B = \{1, 5, 7\} \) **Calculate \( B - A \):** - Elements in \( B \) but not in \( A \): - From \( B \): 2, 3, 4, 6, 9, 10 - From \( A \): 1, 4, 5, 7 - Thus, \( B - A = \{2, 3, 6, 9, 10\} \) **Combine the results:** \[ A \Delta B = (A - B) \cup (B - A) = \{1, 5, 7\} \cup \{2, 3, 6, 9, 10\} = \{1, 2, 3, 5, 6, 7, 9, 10\} \] ### Final Result The final result of \( A \Delta B \) is: \[ \{1, 2, 3, 5, 6, 7, 9, 10\} \]
Promotional Banner

Topper's Solved these Questions

  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-D(Linked Comprehension Type Questions))|3 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise COMPREHENSION-II|3 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-B(Objective Type Question(One option is correct))|13 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos

Similar Questions

Explore conceptually related problems

Let X={1,2,3, , 10},A={1,2,3,4,5},B={1,3,5,7,9}a n dC={2,4,8, 10} , verify the following A-B=AnnB^c

If A={1,2,3,4,5,6) and B={2,4,5,6,8,9,10} then A DeltaB is equal to

If A={1, 2, 3, 4, 5, 6} B={2, 4, 5, 6, 8, 9, 10}, "find" ADeltaB .

If A={1,2,3,4,5,6,7,8} and B={1,3,4,6,7,8,9} then

If A={1,2,3,4,5,6,7,8}\ a n d\ B={1,3,5,6,7,8,9},\ t h e n\ A-B={2,4},\ B-A={9}dot

If M = { 1,2,3,4,5.6,7,8,9} and B = { 1,2,3,4,5.6,7,8,9} , then B cancelsub M .

If U = {1,2,3,4,5,6,7,8,9,10}, A = {1,2,3,5}, B = 2,4,6,7} and C = {2,3,4,8} . Then (i) (B uu C)' is "………" . , (ii) (C - A)' is "………"

Let U={1,2,3,4,5,6,7,8,9}, B={2,4,6,8} andC={3,4,5,6} Find (B-C)' .

If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is

If the sets A and B are given by A = {1, 2, 3, 4} B = {2, 4, 6, 8, 10} and the universal set U = {1,2,3,4,5,6,7,8,9,10} then