Home
Class 12
MATHS
Consider the function f(x) = {{:(2, x le...

Consider the function `f(x) = {{:(2, x le 0),(2, x gt 0):} ` Find `lim_(x->2)`

Text Solution

AI Generated Solution

To find the limit of the function \( f(x) \) as \( x \) approaches 2, we first need to understand the function itself. The function is defined as: \[ f(x) = \begin{cases} 2 & \text{if } x \leq 0 \\ 2 & \text{if } x > 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If the function f (x) = {{:(3,x lt 0),(12, x gt 0):} then lim_(x to 0) f (x) =

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Discuss the continuity of the function f(x) ={(3-x", "x le 0),(x", "x gt 0):} at x=0.

Find the value of k , so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Discuss the continutiy of the function f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}

Consider the function f(x)=((ax+1)/(bx+2))^(x) , where a,bgt0 , the lim_(xtooo)f(x) is

A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.