Home
Class 12
MATHS
Find lim(x to 1) f(x), where f(x) = {{:(...

Find `lim_(x to 1) f(x)`, where `f(x) = {{:(x + 1, x != 1),(0, x = 1):}}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 1} f(x) \), where \[ f(x) = \begin{cases} x + 1 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases} \] we will evaluate the limit by considering the right-hand limit and the left-hand limit as \( x \) approaches 1. ### Step 1: Find the Right-Hand Limit We start by calculating the right-hand limit, denoted as \( \lim_{x \to 1^+} f(x) \). Since we are approaching 1 from the right, \( x \) will be slightly greater than 1. In this case, we use the definition of \( f(x) \) for \( x \neq 1 \): \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x + 1) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} (x + 1) = 1 + 1 = 2 \] ### Step 2: Find the Left-Hand Limit Next, we calculate the left-hand limit, denoted as \( \lim_{x \to 1^-} f(x) \). Here, \( x \) will be slightly less than 1. Again, we use the definition of \( f(x) \) for \( x \neq 1 \): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 1) \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} (x + 1) = 1 + 1 = 2 \] ### Step 3: Conclude the Limit Since both the right-hand limit and the left-hand limit are equal: \[ \lim_{x \to 1^+} f(x) = 2 \quad \text{and} \quad \lim_{x \to 1^-} f(x) = 2 \] We can conclude that: \[ \lim_{x \to 1} f(x) = 2 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} f(x) = 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

Find (lim)_(x->1)f(x) ,where f(x)={(x^2-1, xlt=1),(-x^2-1, x >1):}

Find lim_(xrarr0) f(x) where f(x)={{:((x)/(|x|),xne0),(0,x=0):}

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Find ("lim")_(x->3)\ f(x) \ where\ f(x)={4,\ if\ x >3 x+1, \ if\ x<3

lim_(x to -1)f(x) exists, find c given f(x)={{:(x+2,x le -1),(cx^(2), x gt -1)}

Find number of roots of f(x) where f(x) = 1/(x+1)^3 -3x + sin x

For what values of p does the Lim_(x to 1) f(x) exist , where f is defined by the rule f(x) = {:{(2px+3," if " x lt 1 ),(1 - px^(2)," if "x gt 1):}

{:("Column-I","Column-II"),(A.f(x) = (1)/(sqrt(x -2)),p.lim_(x to 0)f(x) =1),(B. f(x) = (3x - "sin"x)/(x + "sin" x), q. lim_(x to 0)f(x) = 0),(C.f(x) = x "sin"(pi)/(x) f(0)=0,r.lim_(x to oo) f(x) = 0),(f(x) = tan^(-1) (1)/(x),s.lim_(x to 0) "does not exist"):}

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Calculate lim(x to 2) , where f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):...

    Text Solution

    |

  2. Calculate lim(x to 0) f(x), where f(x) = (1)/(x^(2)) for x gt 0

    Text Solution

    |

  3. Find lim(x to 1) f(x), where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

    Text Solution

    |

  4. Find lim(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

    Text Solution

    |

  5. Evalute (i) lim(x to 1) [(x)/(2)] (ii) lim(x to 2) [x^(2) - 5]

    Text Solution

    |

  6. Evalute lim(x to 3) [9x - 14]

    Text Solution

    |

  7. Evaluate lim(x to 1) [3x^(4) + 4]

    Text Solution

    |

  8. Evaluate lim(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

    Text Solution

    |

  9. Evaluate lim(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

    Text Solution

    |

  10. Evaluate lim(x to 2) [(x^(2) - 4)/(2x + 2)]

    Text Solution

    |

  11. Evaluate underset(x to 1)(lim) (1 + (x - 1)^(2))/(1 + x^(2))

    Text Solution

    |

  12. Evaluate lim(x to a) (sqrt(x) + sqrt(a))/(x + a)

    Text Solution

    |

  13. Evaluate underst(x to 2)(lim) (x^(2) + 2x - 8)/(x^(2) - 4)

    Text Solution

    |

  14. Evaluate lim(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

    Text Solution

    |

  15. Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)

    Text Solution

    |

  16. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  17. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  18. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  19. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  20. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |