Home
Class 12
MATHS
Find lim(X to 0) f(x) where f(x) = {{:(x...

Find `lim_(X to 0) f(x)` where `f(x) = {{:(x, x!=0),(5,x=0):}}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 0, we can follow these steps: ### Step 1: Define the Function The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} x & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} \] ### Step 2: Find the Right-Hand Limit To find the right-hand limit as \( x \) approaches 0, we calculate: \[ \lim_{x \to 0^+} f(x) \] Since \( x \) is approaching 0 from the right, \( x \) is not equal to 0, so we use the first case of the function: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0 \] ### Step 3: Find the Left-Hand Limit Next, we find the left-hand limit as \( x \) approaches 0: \[ \lim_{x \to 0^-} f(x) \] Similarly, since \( x \) is approaching 0 from the left, \( x \) is still not equal to 0, so we again use the first case of the function: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x = 0 \] ### Step 4: Compare the Limits Now we compare the right-hand limit and the left-hand limit: \[ \lim_{x \to 0^+} f(x) = 0 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = 0 \] Since both limits are equal, we can conclude that: \[ \lim_{x \to 0} f(x) = 0 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} f(x) = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

Find lim_(xrarr0) f(x) where f(x)={{:((x)/(|x|),xne0),(0,x=0):}

Find (lim)_(x->5)f(x) , where f(x)=|x|-5

Evaluate ("lim")_(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 , 0,\ x=0

Does Lim_(x to 0 ) f(x) exist if f(x) = {:{(x," when "x lt 0 ),(0 ," when " x = 0 ),(x^(2)," when " x gt 0):}

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Find all points of discontinuity of f, where f(x)={{:((sinx)/x , ifx<0),(x+1, ifxgeq0):}

Evaluate lim_(xrarr0) f(x) , where

{:("Column-I","Column-II"),(A.f(x) = (1)/(sqrt(x -2)),p.lim_(x to 0)f(x) =1),(B. f(x) = (3x - "sin"x)/(x + "sin" x), q. lim_(x to 0)f(x) = 0),(C.f(x) = x "sin"(pi)/(x) f(0)=0,r.lim_(x to oo) f(x) = 0),(f(x) = tan^(-1) (1)/(x),s.lim_(x to 0) "does not exist"):}

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Calculate lim(x to 0) f(x), where f(x) = (1)/(x^(2)) for x gt 0

    Text Solution

    |

  2. Find lim(x to 1) f(x), where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

    Text Solution

    |

  3. Find lim(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

    Text Solution

    |

  4. Evalute (i) lim(x to 1) [(x)/(2)] (ii) lim(x to 2) [x^(2) - 5]

    Text Solution

    |

  5. Evalute lim(x to 3) [9x - 14]

    Text Solution

    |

  6. Evaluate lim(x to 1) [3x^(4) + 4]

    Text Solution

    |

  7. Evaluate lim(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

    Text Solution

    |

  8. Evaluate lim(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

    Text Solution

    |

  9. Evaluate lim(x to 2) [(x^(2) - 4)/(2x + 2)]

    Text Solution

    |

  10. Evaluate underset(x to 1)(lim) (1 + (x - 1)^(2))/(1 + x^(2))

    Text Solution

    |

  11. Evaluate lim(x to a) (sqrt(x) + sqrt(a))/(x + a)

    Text Solution

    |

  12. Evaluate underst(x to 2)(lim) (x^(2) + 2x - 8)/(x^(2) - 4)

    Text Solution

    |

  13. Evaluate lim(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

    Text Solution

    |

  14. Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)

    Text Solution

    |

  15. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  16. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  17. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  18. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  19. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  20. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |