Home
Class 12
MATHS
Evaluate lim(x to 3) [4x^(3) + 3x^(2) +...

Evaluate `lim_(x to 3) [4x^(3) + 3x^(2) + 2x + 6]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 3} [4x^3 + 3x^2 + 2x + 6] \), we can directly substitute \( x = 3 \) into the polynomial function since it is continuous everywhere. ### Step-by-Step Solution: 1. **Substitute \( x = 3 \)** into the expression: \[ 4(3)^3 + 3(3)^2 + 2(3) + 6 \] 2. **Calculate \( 3^3 \)**: \[ 3^3 = 27 \] Therefore, \( 4(3^3) = 4 \times 27 = 108 \). 3. **Calculate \( 3^2 \)**: \[ 3^2 = 9 \] Therefore, \( 3(3^2) = 3 \times 9 = 27 \). 4. **Calculate \( 2(3) \)**: \[ 2(3) = 6 \] 5. **Combine all the results**: \[ 108 + 27 + 6 + 6 \] 6. **Add the values together**: \[ 108 + 27 = 135 \] \[ 135 + 6 = 141 \] \[ 141 + 6 = 147 \] Thus, the limit is: \[ \lim_{x \to 3} [4x^3 + 3x^2 + 2x + 6] = 147 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 3) (x - 3)/(4x^(2) - 15x + 9)

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to sqrt(2)) (x^(9) - 3x^(8) + x^(6) - 9x^(4) - 4x^(2) - 16x + 84)/(x^(5) - 3x^(4) - 4x + 12)

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)