Home
Class 12
MATHS
Evaluate lim(x to 0) [(3x^(2) + 4x + 5)...

Evaluate `lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \(\lim_{x \to 0} \frac{3x^2 + 4x + 5}{x^2 - 2x + 3}\), we will follow the steps outlined in the video. ### Step 1: Substitute \(x = 0\) We start by substituting \(x = 0\) into the function: \[ f(0) = \frac{3(0)^2 + 4(0) + 5}{(0)^2 - 2(0) + 3} \] Calculating the numerator: \[ 3(0)^2 + 4(0) + 5 = 0 + 0 + 5 = 5 \] Calculating the denominator: \[ (0)^2 - 2(0) + 3 = 0 - 0 + 3 = 3 \] So we have: \[ f(0) = \frac{5}{3} \] ### Step 2: Check if the result is finite Since \(\frac{5}{3}\) is a finite value, we do not have an indeterminate form (like \(0/0\) or \(\infty/\infty\)). Therefore, we can conclude that: \[ \lim_{x \to 0} \frac{3x^2 + 4x + 5}{x^2 - 2x + 3} = \frac{5}{3} \] ### Final Answer Thus, the limit is: \[ \frac{5}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(x to 0) (tan 5x)/(2x)

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate lim_(x to 0) ("sin"^(2) (3x//2x))/(x)

Evaluate : lim_(x to 0 ) (3^(x) -2^(x))/(tanx)

Evaluate lim_(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

Evaluate: lim_( x to 2) (x^(2)-4)/(x^(3)-4x^(2)+4x)