Home
Class 12
MATHS
Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)...

Evaluate `lim_(x to 1) (x^(3) - 1)/(x - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \(\lim_{x \to 1} \frac{x^3 - 1}{x - 1}\), we can follow these steps: ### Step 1: Identify the limit We start with the limit expression: \[ L = \lim_{x \to 1} \frac{x^3 - 1}{x - 1} \] ### Step 2: Factor the numerator Notice that \(x^3 - 1\) can be factored using the difference of cubes formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, \(a = x\) and \(b = 1\), so we can write: \[ x^3 - 1 = (x - 1)(x^2 + x \cdot 1 + 1^2) = (x - 1)(x^2 + x + 1) \] ### Step 3: Substitute the factorization into the limit Now, substitute the factorization back into the limit: \[ L = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} \] ### Step 4: Cancel the common terms Since \(x - 1\) appears in both the numerator and the denominator, we can cancel it (as long as \(x \neq 1\)): \[ L = \lim_{x \to 1} (x^2 + x + 1) \] ### Step 5: Evaluate the limit Now, we can directly substitute \(x = 1\) into the remaining expression: \[ L = 1^2 + 1 + 1 = 1 + 1 + 1 = 3 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3 \] ---

To evaluate the limit \(\lim_{x \to 1} \frac{x^3 - 1}{x - 1}\), we can follow these steps: ### Step 1: Identify the limit We start with the limit expression: \[ L = \lim_{x \to 1} \frac{x^3 - 1}{x - 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate : lim_(x to 1) (x^(m)-1)/(x^(n)-1)

Evaluate lim_(x to 1) [3x^(4) + 4]

Evaluate lim_(x to 1) ((1)/(x^(2) + x - 2) - (x)/(x^(3) - 1))

Evaluate : lim_(x to -1) x/([x])

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(x to 0) ((1+x)^(6)-1)/((1+x)^(2)-1) .

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate underst(x to 2)(lim) (x^(2) + 2x - 8)/(x^(2) - 4)

    Text Solution

    |

  2. Evaluate lim(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

    Text Solution

    |

  3. Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)

    Text Solution

    |

  4. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  5. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  6. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  7. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  8. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  9. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  10. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  11. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  12. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  13. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  14. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  15. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  16. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  17. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  18. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  19. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  20. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |