Home
Class 12
MATHS
Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4...

Evaluate `lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^4 - 8x^2 + 16}, \] we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 2 \) into the numerator and denominator to check if we get an indeterminate form. **Numerator:** \[ 2^3 - 3(2^2) + 4 = 8 - 12 + 4 = 0. \] **Denominator:** \[ 2^4 - 8(2^2) + 16 = 16 - 32 + 16 = 0. \] Since both the numerator and denominator evaluate to 0, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. **Differentiate the numerator:** \[ \frac{d}{dx}(x^3 - 3x^2 + 4) = 3x^2 - 6x. \] **Differentiate the denominator:** \[ \frac{d}{dx}(x^4 - 8x^2 + 16) = 4x^3 - 16x. \] ### Step 3: Rewrite the limit Now we rewrite the limit using the derivatives we found: \[ \lim_{x \to 2} \frac{3x^2 - 6x}{4x^3 - 16x}. \] ### Step 4: Substitute the limit value again Now we substitute \( x = 2 \) into the new numerator and denominator. **New Numerator:** \[ 3(2^2) - 6(2) = 3(4) - 12 = 12 - 12 = 0. \] **New Denominator:** \[ 4(2^3) - 16(2) = 4(8) - 32 = 32 - 32 = 0. \] We still have the indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again **Differentiate the numerator again:** \[ \frac{d}{dx}(3x^2 - 6x) = 6x - 6. \] **Differentiate the denominator again:** \[ \frac{d}{dx}(4x^3 - 16x) = 12x^2 - 16. \] ### Step 6: Rewrite the limit again Now we rewrite the limit using the new derivatives: \[ \lim_{x \to 2} \frac{6x - 6}{12x^2 - 16}. \] ### Step 7: Substitute the limit value one more time Now we substitute \( x = 2 \): **New Numerator:** \[ 6(2) - 6 = 12 - 6 = 6. \] **New Denominator:** \[ 12(2^2) - 16 = 12(4) - 16 = 48 - 16 = 32. \] ### Step 8: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 2} \frac{6}{32} = \frac{3}{16}. \] Thus, the final answer is: \[ \lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^4 - 8x^2 + 16} = \frac{3}{16}. \]

To evaluate the limit \[ \lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^4 - 8x^2 + 16}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate lim_(x to 2) [(x^(2) - 4)/(2x + 2)]

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(x to 4) (x^(2) - 7x + 12)/(x^(2) - 16)

Evalutate lim_(x to 4)((x^(2) - x - 12)^(18))/((x^(3) - 8x^(2) + 16x)^(9))

Evaluate lim_(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

Evaluate lim_(x to sqrt(2)) (x^(9) - 3x^(8) + x^(6) - 9x^(4) - 4x^(2) - 16x + 84)/(x^(5) - 3x^(4) - 4x + 12)

Evaluate: lim_( x to 2) (x^(2)-4)/(x^(3)-4x^(2)+4x)

Evaluate lim_(x to 3) (x - 3)/(4x^(2) - 15x + 9)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

    Text Solution

    |

  2. Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)

    Text Solution

    |

  3. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  4. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  5. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  6. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  7. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  8. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  9. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  10. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  11. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  12. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  13. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  14. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  15. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  16. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  17. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  18. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  19. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  20. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |