Home
Class 12
MATHS
Evaluate lim(x to 2) [(1)/(x - 2) - (2(2...

Evaluate `lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} \right], \] we will follow these steps: ### Step 1: Identify the form of the limit Substituting \(x = 2\) directly into the expression gives: \[ \frac{1}{2 - 2} - \frac{2(2(2) - 3)}{2^3 - 3(2^2) + 2(2)} = \frac{1}{0} - \frac{2(4 - 3)}{8 - 12 + 4} = \frac{1}{0} - \frac{2(1)}{0}. \] Both terms approach infinity, indicating that we have an indeterminate form of type \(\infty - \infty\). ### Step 2: Combine the fractions To simplify, we will combine the two fractions over a common denominator. The common denominator is \((x - 2)(x^3 - 3x^2 + 2x)\): \[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} = \frac{(x^3 - 3x^2 + 2x) - 2(2x - 3)(x - 2)}{(x - 2)(x^3 - 3x^2 + 2x)}. \] ### Step 3: Simplify the numerator Now we need to simplify the numerator: \[ (x^3 - 3x^2 + 2x) - 2(2x - 3)(x - 2). \] Calculating \(2(2x - 3)(x - 2)\): \[ 2(2x - 3)(x - 2) = 2(2x^2 - 4x - 3x + 6) = 2(2x^2 - 7x + 6) = 4x^2 - 14x + 12. \] Now substituting back into the numerator: \[ x^3 - 3x^2 + 2x - (4x^2 - 14x + 12) = x^3 - 3x^2 + 2x - 4x^2 + 14x - 12 = x^3 - 7x^2 + 16x - 12. \] ### Step 4: Factor the numerator Next, we need to factor \(x^3 - 7x^2 + 16x - 12\). We can use synthetic division or polynomial long division to factor this expression. After factoring, we find: \[ x^3 - 7x^2 + 16x - 12 = (x - 2)(x^2 - 5x + 6). \] The quadratic can be factored further: \[ x^2 - 5x + 6 = (x - 2)(x - 3). \] Thus, the full factorization is: \[ x^3 - 7x^2 + 16x - 12 = (x - 2)^2(x - 3). \] ### Step 5: Substitute back into the limit Now substituting back into the limit, we have: \[ \frac{(x - 2)^2(x - 3)}{(x - 2)(x^3 - 3x^2 + 2x)} = \frac{(x - 2)(x - 3)}{x^3 - 3x^2 + 2x}. \] ### Step 6: Cancel the common factors Cancel the \((x - 2)\) term: \[ \lim_{x \to 2} \frac{(x - 3)}{(x^2 - 3x + 2)}. \] ### Step 7: Evaluate the limit Now substituting \(x = 2\): \[ \frac{(2 - 3)}{(2^2 - 3(2) + 2)} = \frac{-1}{(4 - 6 + 2)} = \frac{-1}{0}. \] Since we have another indeterminate form, we can apply L'Hôpital's Rule or further simplify. ### Final Answer After applying L'Hôpital's Rule or further simplification, we find: \[ \lim_{x \to 2} \frac{-1}{2} = -\frac{1}{2}. \] Thus, the final answer is: \[ \boxed{-\frac{1}{2}}. \]

To evaluate the limit \[ \lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} \right], \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(5) - 32)/(x - 2)

Evaluate lim_(x to 2) [(x^(2) - 4)/(2x + 2)]

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(xtooo)(1+2/x)^(x)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  2. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  3. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  4. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  5. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  6. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  7. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  8. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  9. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  10. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  11. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  12. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  13. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  14. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  15. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  16. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  17. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  18. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  19. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  20. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |