Home
Class 12
MATHS
Evaluate lim(x to 2) (x^(2) - 4) [(1)/(...

Evaluate `lim_(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 2} (x^2 - 4) \left( \frac{1}{x + 2} + \frac{1}{x - 2} \right) \), we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we will substitute \( x = 2 \) into the expression to check if we get a determinate form. \[ x^2 - 4 = 2^2 - 4 = 4 - 4 = 0 \] Now, substituting into the second part: \[ \frac{1}{x + 2} + \frac{1}{x - 2} = \frac{1}{2 + 2} + \frac{1}{2 - 2} = \frac{1}{4} + \frac{1}{0} \] This results in \( \frac{1}{4} + \infty \), which gives us \( 0 \times \infty \). This is an indeterminate form. ### Step 2: Rewrite the Expression Next, we will rewrite the expression to resolve the indeterminate form. We know that \( x^2 - 4 \) can be factored as \( (x - 2)(x + 2) \): \[ \lim_{x \to 2} (x - 2)(x + 2) \left( \frac{1}{x + 2} + \frac{1}{x - 2} \right) \] ### Step 3: Find a Common Denominator Now, we will combine the fractions in the limit: \[ \frac{1}{x + 2} + \frac{1}{x - 2} = \frac{(x - 2) + (x + 2)}{(x + 2)(x - 2)} = \frac{2x}{(x + 2)(x - 2)} \] ### Step 4: Substitute Back into the Limit Substituting this back into our limit gives: \[ \lim_{x \to 2} (x - 2)(x + 2) \cdot \frac{2x}{(x + 2)(x - 2)} \] ### Step 5: Cancel Out Terms We can cancel \( (x - 2) \) and \( (x + 2) \): \[ \lim_{x \to 2} 2x \] ### Step 6: Evaluate the Limit Now we can substitute \( x = 2 \): \[ 2 \cdot 2 = 4 \] Thus, the limit is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) [(x^(2) - 4)/(2x + 2)]

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 2) (x^(5) - 32)/(x - 2)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(x to 4) (x^(2) - 7x + 12)/(x^(2) - 16)

Evaluate lim_(x to 3) (x - 3)/(4x^(2) - 15x + 9)

Evaluate: lim_(xrarr2) (x^(2)-4)/(x-2)

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  2. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  3. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  4. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  5. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  6. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  7. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  8. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  9. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  10. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  11. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  12. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  13. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  14. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  15. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  16. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  17. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  18. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  19. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  20. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |