Home
Class 12
MATHS
Evaluate lim(x to sqrt(3)) (3x^(8) + x^...

Evaluate `lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \sqrt{3}} \frac{3x^8 + x^7 - 11x^6 - 2x^5 - 9x^4 - x^3 + 35x^2 + 6x + 30}{x^5 - 2x^4 + 4x^2 - 9x + 6}, \] we will follow these steps: ### Step 1: Substitute \(x = \sqrt{3}\) First, we substitute \(x = \sqrt{3}\) into the numerator and denominator to check if we get an indeterminate form \( \frac{0}{0} \). **Numerator:** \[ 3(\sqrt{3})^8 + (\sqrt{3})^7 - 11(\sqrt{3})^6 - 2(\sqrt{3})^5 - 9(\sqrt{3})^4 - (\sqrt{3})^3 + 35(\sqrt{3})^2 + 6(\sqrt{3}) + 30 \] Calculating each term: - \(3(\sqrt{3})^8 = 3 \cdot 81 = 243\) - \((\sqrt{3})^7 = 3^{3.5} = 3 \cdot 9 = 27\sqrt{3}\) - \(-11(\sqrt{3})^6 = -11 \cdot 27 = -297\) - \(-2(\sqrt{3})^5 = -2 \cdot 9\sqrt{3} = -18\sqrt{3}\) - \(-9(\sqrt{3})^4 = -9 \cdot 9 = -81\) - \(-(\sqrt{3})^3 = -3\sqrt{3}\) - \(35(\sqrt{3})^2 = 35 \cdot 3 = 105\) - \(6(\sqrt{3}) = 6\sqrt{3}\) - \(30\) Combining these gives us: \[ 243 + 27\sqrt{3} - 297 - 18\sqrt{3} - 81 - 3\sqrt{3} + 105 + 6\sqrt{3} + 30 \] This simplifies to: \[ (243 - 297 - 81 + 105 + 30) + (27\sqrt{3} - 18\sqrt{3} - 3\sqrt{3} + 6\sqrt{3}) = 0 + 0 = 0 \] **Denominator:** \[ (\sqrt{3})^5 - 2(\sqrt{3})^4 + 4(\sqrt{3})^2 - 9(\sqrt{3}) + 6 \] Calculating each term: - \((\sqrt{3})^5 = 9\sqrt{3}\) - \(-2(\sqrt{3})^4 = -2 \cdot 9 = -18\) - \(4(\sqrt{3})^2 = 4 \cdot 3 = 12\) - \(-9(\sqrt{3})\) - \(6\) Combining these gives us: \[ 9\sqrt{3} - 18 + 12 - 9\sqrt{3} + 6 = 0 \] Since both the numerator and denominator equal zero, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if \( \lim_{x \to a} f(x) = 0 \) and \( \lim_{x \to a} g(x) = 0 \). ### Step 3: Differentiate the Numerator and Denominator **Numerator:** \[ f(x) = 3x^8 + x^7 - 11x^6 - 2x^5 - 9x^4 - x^3 + 35x^2 + 6x + 30 \] Differentiating: \[ f'(x) = 24x^7 + 7x^6 - 66x^5 - 10x^4 - 36x^3 - 3x^2 + 70x + 6 \] **Denominator:** \[ g(x) = x^5 - 2x^4 + 4x^2 - 9x + 6 \] Differentiating: \[ g'(x) = 5x^4 - 8x^3 + 8x - 9 \] ### Step 4: Evaluate the Limit Again Now we evaluate the limit again: \[ \lim_{x \to \sqrt{3}} \frac{f'(x)}{g'(x)} \] Substituting \(x = \sqrt{3}\): **Numerator:** \[ f'(\sqrt{3}) = 24(\sqrt{3})^7 + 7(\sqrt{3})^6 - 66(\sqrt{3})^5 - 10(\sqrt{3})^4 - 36(\sqrt{3})^3 + 70(\sqrt{3}) + 6 \] Calculating each term: - \(24(\sqrt{3})^7 = 24 \cdot 27\sqrt{3} = 648\sqrt{3}\) - \(7(\sqrt{3})^6 = 7 \cdot 27 = 189\) - \(-66(\sqrt{3})^5 = -66 \cdot 9\sqrt{3} = -594\sqrt{3}\) - \(-10(\sqrt{3})^4 = -10 \cdot 9 = -90\) - \(-36(\sqrt{3})^3 = -36 \cdot 3\sqrt{3} = -108\sqrt{3}\) - \(70(\sqrt{3}) = 70\sqrt{3}\) - \(6\) Combining these gives us: \[ (189 - 90 + 6) + (648\sqrt{3} - 594\sqrt{3} - 108\sqrt{3} + 70\sqrt{3}) = 105 + 0 = 105 \] **Denominator:** \[ g'(\sqrt{3}) = 5(\sqrt{3})^4 - 8(\sqrt{3})^3 + 8(\sqrt{3}) - 9 \] Calculating each term: - \(5(\sqrt{3})^4 = 5 \cdot 9 = 45\) - \(-8(\sqrt{3})^3 = -8 \cdot 3\sqrt{3} = -24\sqrt{3}\) - \(8(\sqrt{3}) = 8\sqrt{3}\) - \(-9\) Combining these gives us: \[ 45 - 9 + (8\sqrt{3} - 24\sqrt{3}) = 36 - 16\sqrt{3} \] ### Step 5: Final Limit Calculation Now we have: \[ \lim_{x \to \sqrt{3}} \frac{f'(\sqrt{3})}{g'(\sqrt{3})} = \frac{105}{36 - 16\sqrt{3}} \] This is our final answer.

To evaluate the limit \[ \lim_{x \to \sqrt{3}} \frac{3x^8 + x^7 - 11x^6 - 2x^5 - 9x^4 - x^3 + 35x^2 + 6x + 30}{x^5 - 2x^4 + 4x^2 - 9x + 6}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to sqrt(2)) (x^(9) - 3x^(8) + x^(6) - 9x^(4) - 4x^(2) - 16x + 84)/(x^(5) - 3x^(4) - 4x + 12)

Evaluate lim_(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

Divide 6x^(4) - 9x^(3) + 18x^(2) " by " 3x

Evaluate: lim_(xrarr3) (x^(2)-4x+3)/(x^(2)+6x- 27)

Evaluate: (lim)_(x->sqrt(2))(x^9-3x^8+x^6-9x^4-4x^2-16 x+84)/(x^5-3x^4-4x+12)

Factorise : 3x^5 - 6x^4 - 2x^3 + 4x^2 + x-2

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  2. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  3. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  4. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  5. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  6. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  7. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  8. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  9. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  10. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  11. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  12. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  13. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  14. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  15. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  16. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  17. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  18. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  19. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  20. Evaluate underset(x to 0)(lim) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |