Home
Class 12
MATHS
Evaluate lim(x to 3) (x^(3) - 7x^(2) + ...

Evaluate `lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^4 - 5x^3 + 27x - 27}, \] we will follow these steps: ### Step 1: Substitute \( x = 3 \) First, we substitute \( x = 3 \) into the numerator and denominator to check if we get an indeterminate form. **Numerator:** \[ 3^3 - 7(3^2) + 15(3) - 9 = 27 - 63 + 45 - 9 = 0. \] **Denominator:** \[ 3^4 - 5(3^3) + 27(3) - 27 = 81 - 135 + 81 - 27 = 0. \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. **Differentiate the numerator:** \[ \frac{d}{dx}(x^3 - 7x^2 + 15x - 9) = 3x^2 - 14x + 15. \] **Differentiate the denominator:** \[ \frac{d}{dx}(x^4 - 5x^3 + 27x - 27) = 4x^3 - 15x^2 + 27. \] ### Step 3: Evaluate the limit again Now we substitute \( x = 3 \) into the derivatives: **Numerator:** \[ 3(3^2) - 14(3) + 15 = 27 - 42 + 15 = 0. \] **Denominator:** \[ 4(3^3) - 15(3^2) + 27 = 108 - 135 + 27 = 0. \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again **Differentiate the numerator again:** \[ \frac{d}{dx}(3x^2 - 14x + 15) = 6x - 14. \] **Differentiate the denominator again:** \[ \frac{d}{dx}(4x^3 - 15x^2 + 27) = 12x^2 - 30x. \] ### Step 5: Evaluate the limit again Now substitute \( x = 3 \): **Numerator:** \[ 6(3) - 14 = 18 - 14 = 4. \] **Denominator:** \[ 12(3^2) - 30(3) = 12(9) - 90 = 108 - 90 = 18. \] ### Step 6: Calculate the limit Now we can compute the limit: \[ \lim_{x \to 3} \frac{6x - 14}{12x^2 - 30x} = \frac{4}{18} = \frac{2}{9}. \] Thus, the final answer is: \[ \lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^4 - 5x^3 + 27x - 27} = \frac{2}{9}. \]

To evaluate the limit \[ \lim_{x \to 3} \frac{x^3 - 7x^2 + 15x - 9}{x^4 - 5x^3 + 27x - 27}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 3) (x - 3)/(4x^(2) - 15x + 9)

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 3) (x^(7) - 2187)/(x^4 - 81)

Evaluate lim_(xto-3) (x^(3)+27)/(x^(5)+243)

Evaluate : lim_(x to 9)(x^(3/2)-27)/(x-9)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  2. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  3. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  4. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  5. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  6. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  7. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  8. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  9. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  10. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  11. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  12. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  13. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  14. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  15. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  16. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  17. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  18. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  19. Evaluate underset(x to 0)(lim) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  20. Evaluate underset(x to 0)(lim) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |