Home
Class 12
MATHS
Evaluate lim(x to 4) (x^(5) - 1024)/(x ...

Evaluate `lim_(x to 4) (x^(5) - 1024)/(x - 5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 4} \frac{x^5 - 1024}{x - 5} \), we can follow these steps: ### Step 1: Recognize the expression We start with the limit: \[ \lim_{x \to 4} \frac{x^5 - 1024}{x - 5} \] Notice that \( 1024 = 4^5 \), so we can rewrite the expression as: \[ \lim_{x \to 4} \frac{x^5 - 4^5}{x - 5} \] ### Step 2: Apply the limit As \( x \) approaches 4, the numerator \( x^5 - 4^5 \) approaches \( 0 \) and the denominator \( x - 5 \) approaches \( -1 \). However, we can simplify the numerator using the difference of powers formula. ### Step 3: Use the difference of powers formula The difference of powers can be factored as: \[ x^5 - 4^5 = (x - 4)(x^4 + x^3 \cdot 4 + x^2 \cdot 4^2 + x \cdot 4^3 + 4^4) \] Thus, we rewrite our limit: \[ \lim_{x \to 4} \frac{(x - 4)(x^4 + x^3 \cdot 4 + x^2 \cdot 4^2 + x \cdot 4^3 + 4^4)}{x - 5} \] ### Step 4: Substitute \( x = 4 \) Now, we can substitute \( x = 4 \) into the limit: \[ \lim_{x \to 4} \frac{(x - 4)(x^4 + x^3 \cdot 4 + x^2 \cdot 4^2 + x \cdot 4^3 + 4^4)}{x - 5} \] As \( x \) approaches 4, the term \( (x - 4) \) goes to 0, but we need to evaluate the remaining expression: \[ x^4 + x^3 \cdot 4 + x^2 \cdot 4^2 + x \cdot 4^3 + 4^4 \] Substituting \( x = 4 \): \[ 4^4 + 4^3 \cdot 4 + 4^2 \cdot 16 + 4 \cdot 64 + 256 \] Calculating each term: - \( 4^4 = 256 \) - \( 4^3 \cdot 4 = 64 \cdot 4 = 256 \) - \( 4^2 \cdot 16 = 16 \cdot 16 = 256 \) - \( 4 \cdot 64 = 256 \) - \( 4^4 = 256 \) Adding these together: \[ 256 + 256 + 256 + 256 + 256 = 1280 \] ### Step 5: Final limit evaluation Now we can evaluate the limit: \[ \lim_{x \to 4} \frac{(x - 4) \cdot 1280}{x - 5} \] Since \( x - 4 \) approaches 0 and \( x - 5 \) approaches -1, we can conclude: \[ \lim_{x \to 4} \frac{0 \cdot 1280}{-1} = 0 \] ### Final Answer Thus, the limit is: \[ \boxed{1280} \]

To evaluate the limit \( \lim_{x \to 4} \frac{x^5 - 1024}{x - 5} \), we can follow these steps: ### Step 1: Recognize the expression We start with the limit: \[ \lim_{x \to 4} \frac{x^5 - 1024}{x - 5} \] Notice that \( 1024 = 4^5 \), so we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(5) - 32)/(x - 2)

Evaluate lim_(xto2) (x^(10)-1024)/(x^(5)-32).

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate : lim_(x to 4 ) (sqrt(x)-2)/(x-4)

Evaluate lim_(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to a) ((x + 3)^(7//5) - (a + 3)^(7//5))/(x - a)

Evaluate : lim_(xto 0) (10^(x) - 2^(x) -5^(x)+1)/(sin^(2)x)

Evaluate lim_(x to 0) (tan 5x)/(2x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4...

    Text Solution

    |

  2. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  3. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  4. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  5. Evaluate underset(x to 0)(lim) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  6. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  7. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  8. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  9. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  10. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  11. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  12. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  13. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  14. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  15. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  16. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  17. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  18. Evaluate underset(x to 0)(lim) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  19. Evaluate underset(x to 0)(lim) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |

  20. Evaluate lim(x to 0) ("sin"5x)/("sin"7x)

    Text Solution

    |