Home
Class 12
MATHS
Evaluate lim(x to a) ((x + 4)^(5//4) - (...

Evaluate `lim_(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to a} \frac{(x + 4)^{\frac{5}{4}} - (a + 4)^{\frac{5}{4}}}{x - a}, \] we can apply the limit property that states: \[ \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a), \] where \( f(x) = (x + 4)^{\frac{5}{4}} \). ### Step 1: Identify the function and find its derivative Let \[ f(x) = (x + 4)^{\frac{5}{4}}. \] We need to find \( f'(x) \). ### Step 2: Differentiate \( f(x) \) Using the power rule of differentiation: \[ f'(x) = \frac{5}{4}(x + 4)^{\frac{5}{4} - 1} \cdot (1) = \frac{5}{4}(x + 4)^{\frac{1}{4}}. \] ### Step 3: Evaluate the derivative at \( x = a \) Now, we evaluate \( f'(a) \): \[ f'(a) = \frac{5}{4}(a + 4)^{\frac{1}{4}}. \] ### Step 4: Substitute back into the limit Thus, we have: \[ \lim_{x \to a} \frac{(x + 4)^{\frac{5}{4}} - (a + 4)^{\frac{5}{4}}}{x - a} = f'(a) = \frac{5}{4}(a + 4)^{\frac{1}{4}}. \] ### Final Answer Therefore, the limit is \[ \frac{5}{4}(a + 4)^{\frac{1}{4}}. \] ---

To evaluate the limit \[ \lim_{x \to a} \frac{(x + 4)^{\frac{5}{4}} - (a + 4)^{\frac{5}{4}}}{x - a}, \] we can apply the limit property that states: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 1) [3x^(4) + 4]

Evaluate lim_(x to 4) (x^(5) - 1024)/(x - 5)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 2) [(x^(2) - 4)/(2x + 2)]

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

Evaluate lim_(x to 3) (x^(7) - 2187)/(x^4 - 81)

Evaluate : lim_(x to 4 ) (sqrt(x)-2)/(x-4)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate lim_(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)