Home
Class 12
MATHS
If lim(x to 2) (X^(n) - 2^(n))/(x - 2) ...

If `lim_(x to 2) (X^(n) - 2^(n))/(x - 2) = 448` and `n in N` , find n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given expression: \[ \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 448 \] ### Step 1: Apply the Limit Formula We can use the limit formula: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} = n \cdot a^{n-1} \] In our case, we set \( a = 2 \). Thus, we have: \[ \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = n \cdot 2^{n-1} \] ### Step 2: Set the Equation From the limit, we equate it to 448: \[ n \cdot 2^{n-1} = 448 \] ### Step 3: Simplify the Equation To find \( n \), we can express 448 in terms of powers of 2: \[ 448 = 2^6 \cdot 7 \] ### Step 4: Rewrite the Equation Now we can rewrite our equation: \[ n \cdot 2^{n-1} = 2^6 \cdot 7 \] ### Step 5: Compare Powers of 2 This implies: \[ n \cdot 2^{n-1} = 7 \cdot 2^6 \] From this, we can see that \( n - 1 = 6 \) (the exponent of 2) and \( n = 7 \). ### Step 6: Verify the Solution Now we substitute \( n = 7 \) back into the equation to verify: \[ 7 \cdot 2^{7-1} = 7 \cdot 2^6 = 7 \cdot 64 = 448 \] This confirms that our solution is correct. ### Final Answer Thus, the value of \( n \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 3) (x^(n) - 3^(n))/(x - 3) = 1458 and n in N , find n.

If lim_(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

If lim_(xto2) (x^(n)-2^(n))/(x-2)=80" and " ninN, " then find the value of n."

If Lim_( x to 2) (x^(n)-2^(n))/(x-2)=80 and if n is a positive integar , find n .

If ("lim")_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

Find the value of n, if lim_(xto2) (x^(n)-2^(n))/(x-2)=80 , n in N .

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(n->oo)sin(x/2^n)/(x/2^n)

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)