Home
Class 12
MATHS
If lim(x to a) (x^(5) + a^(5))/(x + a) ...

If `lim_(x to a) (x^(5) + a^(5))/(x + a) = 405`, Find the value of a.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given expression: \[ \lim_{x \to a} \frac{x^5 + a^5}{x + a} = 405 \] ### Step 1: Substitute \(x = a\) When we substitute \(x = a\) into the expression, we get: \[ \frac{a^5 + a^5}{a + a} = \frac{2a^5}{2a} \] ### Step 2: Simplify the expression The expression simplifies as follows: \[ \frac{2a^5}{2a} = \frac{a^5}{a} = a^4 \] ### Step 3: Set the limit equal to 405 Now, we set the simplified expression equal to 405: \[ a^4 = 405 \] ### Step 4: Solve for \(a\) To find \(a\), we take the fourth root of both sides: \[ a = \pm 405^{1/4} \] ### Step 5: Simplifying \(405\) Next, we need to simplify \(405\). We can factor \(405\) as follows: \[ 405 = 3^4 \times 5 \] ### Step 6: Calculate \(405^{1/4}\) Now we can find \(405^{1/4}\): \[ 405^{1/4} = (3^4 \times 5)^{1/4} = 3 \times 5^{1/4} \] ### Step 7: Write the final answer Thus, the values of \(a\) are: \[ a = \pm 3 \times 5^{1/4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to a) (x^(7) + a^(7))/(x + a) = 7 , find the value of a.

If lim_(x to 0) (x^(9) + a^(9))/(x + a) = 9 , find the value of a

If Lim_(x to a) (x^(5)-a^(5))/(x-a) = 405 , find all possible values of a .

If lim_(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim_(x to 3) (x^(3) - 27)/(x - 3) , find the value of a.

If underset( x to a ) lim (x^(5) - a^(5))/( x-a) = 405 , then possible values ( s ) of a:

If lim_(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

Evaluate lim_(x to 2) (x^(5) - 32)/(x - 2)

Evaluate lim_(x to 4) (x^(5) - 1024)/(x - 5)

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.

If lim_(x->a) (x^5-a^5)/(x-a)=5 , then find the sum of the possible real values of a.