Home
Class 12
MATHS
If lim(x to 0) (x^(9) + a^(9))/(x + a) ...

If `lim_(x to 0) (x^(9) + a^(9))/(x + a) = 9`, find the value of a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{x^9 + a^9}{x + a} = 9, \] we will follow these steps: ### Step 1: Substitute \( x = 0 \) in the limit expression When we substitute \( x = 0 \) into the limit, we get: \[ \frac{0^9 + a^9}{0 + a} = \frac{a^9}{a} = a^8. \] ### Step 2: Set the limit equal to 9 From the limit condition, we have: \[ a^8 = 9. \] ### Step 3: Solve for \( a \) To find \( a \), we take the eighth root of both sides: \[ a = 9^{1/8}. \] ### Step 4: Consider both positive and negative roots Since \( 9 = 3^2 \), we can express \( 9^{1/8} \) as: \[ a = (3^2)^{1/8} = 3^{1/4}. \] Thus, the possible values for \( a \) are: \[ a = 3^{1/4} \quad \text{or} \quad a = -3^{1/4}. \] ### Final Answer The values of \( a \) are: \[ a = \pm 3^{1/4}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If Lim_(x to a) (x^(9)-a^(9))/(x-a) = 9 , find all possible values of a .

If Lim_(x to -a) (x^(9)+a^(9))/(x+a) = 9 , find all possible values of a .

If (lim)_(x->-a)(x^9+a^9)/(x+a)=9,\ find the real value of adot

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

If 3^(3x)=(9)/(3^(x)) , find the value of x .

lim_(x to 3)(x^(3)+x^(2)-12x)/(x^(2)-9)=

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

In sub - part (i) to (x) choose the correct option and in sub - part (xi) to (xy), answer the questions as intructed . If lim_(xtoa)(x^(9)-a^(9))/(x-a)=lim_(xto5)(4+x) , then a equals :

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

If 9^(x+2)=720+9^x , find the value of (4x)^(1/x)