Home
Class 12
MATHS
If lim(x to 2) (x - 2)/(""^(3)sqrt(x) -...

If `lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k)` find the value of K

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits on both sides of the equation and find the value of \( k \). ### Step-by-Step Solution: 1. **Evaluate the Left-Hand Side Limit:** We start with the limit: \[ \lim_{x \to 2} \frac{x - 2}{\sqrt[3]{x} - \sqrt[3]{2}} \] We can apply the formula for limits: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1} \] In our case, \( n = 1 \) and \( a = 2 \), so we rewrite the limit: \[ \lim_{x \to 2} \frac{x - 2}{\sqrt[3]{x} - \sqrt[3]{2}} = \frac{1}{\frac{1}{3} \cdot 2^{\frac{1}{3}}} \] This simplifies to: \[ = \frac{3}{2^{\frac{1}{3}}} \] 2. **Evaluate the Right-Hand Side Limit:** Now we evaluate the limit: \[ \lim_{x \to k} \frac{x^2 - k^2}{x - k} \] We can factor the numerator: \[ x^2 - k^2 = (x - k)(x + k) \] Thus, we have: \[ \lim_{x \to k} \frac{(x - k)(x + k)}{x - k} = \lim_{x \to k} (x + k) = 2k \] 3. **Set the Limits Equal to Each Other:** Now we set the two limits equal to each other: \[ \frac{3}{2^{\frac{1}{3}}} = 2k \] 4. **Solve for \( k \):** To find \( k \), we rearrange the equation: \[ k = \frac{3}{2 \cdot 2^{\frac{1}{3}}} \] This simplifies to: \[ k = \frac{3}{2^{1 + \frac{1}{3}}} = \frac{3}{2^{\frac{4}{3}}} \] 5. **Final Result:** Thus, the value of \( k \) is: \[ k = \frac{3}{2^{\frac{4}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

find lim_(x->sqrt2) (x^2-2)/(x-sqrt2)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

lim_(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))