Home
Class 12
MATHS
Evaluate lim(x to 3) (sqrt(x + 3) - sqr...

Evaluate `lim_(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}, \] we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 3 \) into the expression: \[ \text{Numerator: } \sqrt{3 + 3} - \sqrt{6} = \sqrt{6} - \sqrt{6} = 0, \] \[ \text{Denominator: } 3^2 - 9 = 9 - 9 = 0. \] Both the numerator and denominator approach 0, resulting in the indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter \( \frac{0}{0} \), consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. We will differentiate the numerator and the denominator. **Hint:** Differentiate the numerator and denominator separately. ### Step 3: Differentiate the numerator and denominator 1. **Differentiate the numerator:** \[ \frac{d}{dx}(\sqrt{x + 3} - \sqrt{6}) = \frac{1}{2\sqrt{x + 3}} - 0 = \frac{1}{2\sqrt{x + 3}}. \] 2. **Differentiate the denominator:** \[ \frac{d}{dx}(x^2 - 9) = 2x. \] ### Step 4: Rewrite the limit using derivatives Now we rewrite the limit using the derivatives: \[ \lim_{x \to 3} \frac{\frac{1}{2\sqrt{x + 3}}}{2x}. \] **Hint:** Substitute \( x = 3 \) again after differentiating. ### Step 5: Substitute \( x = 3 \) into the new limit Substituting \( x = 3 \): \[ = \frac{\frac{1}{2\sqrt{3 + 3}}}{2 \cdot 3} = \frac{\frac{1}{2\sqrt{6}}}{6} = \frac{1}{2\sqrt{6} \cdot 6} = \frac{1}{12\sqrt{6}}. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9} = \frac{1}{12\sqrt{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate lim_(x to a) (sqrt(x) + sqrt(a))/(x + a)

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

Evaluate lim_(x to 0) ((sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2)))

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

Evaluate lim_(xtoa) (sqrt(3x-a)-sqrt(x+a))/(x-a).

lim _(x -> 0) (sqrt(3-x) - sqrt(3+x))/(x)

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)