Home
Class 12
MATHS
Evaluate lim(x to 0) ("sin"ax)/(x)...

Evaluate `lim_(x to 0) ("sin"ax)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin(ax)}{x} \), we can follow these steps: ### Step 1: Write down the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin(ax)}{x} \] ### Step 2: Check the form of the limit As \( x \to 0 \), both the numerator \( \sin(ax) \) and the denominator \( x \) approach 0. This gives us the indeterminate form \( \frac{0}{0} \), which allows us to apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( \sin(ax) \) is \( a \cos(ax) \) (using the chain rule). - The derivative of the denominator \( x \) is \( 1 \). Now we rewrite the limit: \[ \lim_{x \to 0} \frac{\sin(ax)}{x} = \lim_{x \to 0} \frac{a \cos(ax)}{1} \] ### Step 4: Evaluate the limit Now we can directly substitute \( x = 0 \): \[ = a \cos(a \cdot 0) = a \cos(0) = a \cdot 1 = a \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin(ax)}{x} = a \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate: lim_(x to 0) (sin x)/(tan x)

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate lim_(x to0 ) ("sin" 3x)/("sin" 6x)

Evaluate lim_(x to 0) ("sin"^(2) (3x//2x))/(x)

Evaluate lim_(x to 0) (1 - cos ax)/(1 - cos bx)

Evaluate, lim_(xto0) (sin2x+3x)/(2x+tan3x) .

Evaluate: lim_(x to 0)(cotx)^(sin2x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  2. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  3. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  4. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  5. Evaluate underset(x to 0)(lim) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  6. Evaluate underset(x to 0)(lim) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |

  7. Evaluate lim(x to 0) ("sin"5x)/("sin"7x)

    Text Solution

    |

  8. Evaluate underset(x to 0)(lim) (1 - cos 2X)/(x)

    Text Solution

    |

  9. Evaluate lim(x to 0) (1 - cos ax)/(1 - cos bx)

    Text Solution

    |

  10. Evaluate : lim(x to 0)(tanx-sinx)/(x^(3)).

    Text Solution

    |

  11. Evaluate lim(x to 0) (x^(3) cot x)/(1 - cos x)

    Text Solution

    |

  12. Evaluate lim(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

    Text Solution

    |

  13. Evaluate lim(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

    Text Solution

    |

  14. Find the derivative of f(x) = x^(3) + 1 at x = - 1

    Text Solution

    |

  15. Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

    Text Solution

    |

  16. Find the derivative of sqrt(3x + 5) using first principle of derivativ...

    Text Solution

    |

  17. Find the derivative of x^(2) + 5x + 3 using first principle of derivat...

    Text Solution

    |

  18. Find the derivative of (3x - 2) (x + 1) using first principle of deriv...

    Text Solution

    |

  19. Find the derivative of (2x + 3)/(4x + 1) using first principle of deri...

    Text Solution

    |

  20. Find the derivative of e^(7 x - 2) using first principle of derivative

    Text Solution

    |