Home
Class 12
MATHS
Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(...

Evaluate `lim_(x to 0) ("sin"^(2) 4x)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the expression: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} \] We can rewrite this as: \[ \lim_{x \to 0} \left( \frac{\sin(4x)}{x} \right)^2 \] ### Step 2: Adjust the expression To apply the standard limit \( \lim_{y \to 0} \frac{\sin(y)}{y} = 1 \), we need to manipulate the expression so that the argument of the sine function matches the denominator. We can do this by multiplying and dividing by 4: \[ \lim_{x \to 0} \left( \frac{\sin(4x)}{4x} \cdot \frac{4x}{x} \right)^2 \] This simplifies to: \[ \lim_{x \to 0} \left( \frac{\sin(4x)}{4x} \cdot 4 \right)^2 \] ### Step 3: Apply the limit Now we can separate the limit: \[ = \left( \lim_{x \to 0} \frac{\sin(4x)}{4x} \cdot 4 \right)^2 \] As \( x \to 0 \), \( \frac{\sin(4x)}{4x} \) approaches 1. Therefore: \[ = (1 \cdot 4)^2 \] ### Step 4: Calculate the final result This simplifies to: \[ = 4^2 = 16 \] Thus, the final result is: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} = 16 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

Evaluate lim_(x to 0) ("sin"ax)/(x)

Eavaluate lim_(x to 0) (sin^(2)2x)/(sin^(2)4x)

Evaluate lim_(x to 0) ("sin"^(2) (3x//2x))/(x)

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate: lim_(x to 0) (sin x)/(tan x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  2. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  3. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  4. Evaluate underset(x to 0)(lim) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  5. Evaluate underset(x to 0)(lim) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |

  6. Evaluate lim(x to 0) ("sin"5x)/("sin"7x)

    Text Solution

    |

  7. Evaluate underset(x to 0)(lim) (1 - cos 2X)/(x)

    Text Solution

    |

  8. Evaluate lim(x to 0) (1 - cos ax)/(1 - cos bx)

    Text Solution

    |

  9. Evaluate : lim(x to 0)(tanx-sinx)/(x^(3)).

    Text Solution

    |

  10. Evaluate lim(x to 0) (x^(3) cot x)/(1 - cos x)

    Text Solution

    |

  11. Evaluate lim(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

    Text Solution

    |

  12. Evaluate lim(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

    Text Solution

    |

  13. Find the derivative of f(x) = x^(3) + 1 at x = - 1

    Text Solution

    |

  14. Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

    Text Solution

    |

  15. Find the derivative of sqrt(3x + 5) using first principle of derivativ...

    Text Solution

    |

  16. Find the derivative of x^(2) + 5x + 3 using first principle of derivat...

    Text Solution

    |

  17. Find the derivative of (3x - 2) (x + 1) using first principle of deriv...

    Text Solution

    |

  18. Find the derivative of (2x + 3)/(4x + 1) using first principle of deri...

    Text Solution

    |

  19. Find the derivative of e^(7 x - 2) using first principle of derivative

    Text Solution

    |

  20. Find the derivative of e^(x^(2)-5x) using first principle of derivativ...

    Text Solution

    |