Home
Class 12
MATHS
If L=underset(xto0)lim(sinx+ae^(x)+be^(-...

If `L=underset(xto0)lim(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))` exists finitely, then
Equation `ax^(2)+bx+c=0` has

A

`-(1)/(3)`

B

`(1)/(2)`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - E|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - F|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then Equation ax^(2)+bx+c=0 has

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The solutions set of ||x+c|-2a|lt4b is

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

underset (xto0)lim(10^(x)-2^(x)-5^(x)+1)/(l n (secx)) is equal to

underset(xto0)("lim")(int_(0)^(x)t tan (5t)dt)/x^3 is equal to :

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

lim_(xto0)((e^(x)-1)/x)^(1//x)