Home
Class 12
MATHS
If lim( xto 0) [(m "sin" x)/(x)] = 8 th...

If `lim_( xto 0) [(m "sin" x)/(x)] = 8` then the value of m is ([.] in the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m \) such that \[ \lim_{x \to 0} \left( m \cdot \frac{\sin x}{x} \right) = 8 \] ### Step-by-Step Solution: 1. **Understanding the limit**: We know from the standard limit that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \left( m \cdot \frac{\sin x}{x} \right) = m \cdot \lim_{x \to 0} \frac{\sin x}{x} = m \cdot 1 = m \] 2. **Setting up the equation**: Given that the limit equals 8, we can set up the equation: \[ m = 8 \] 3. **Applying the greatest integer function**: The problem states that \( m \) is in the greatest integer function. The greatest integer function, denoted as \( \lfloor m \rfloor \), gives the largest integer less than or equal to \( m \). Since \( m = 8 \), we have: \[ \lfloor m \rfloor = \lfloor 8 \rfloor = 8 \] 4. **Conclusion**: Thus, the value of \( m \) in the greatest integer function is: \[ \lfloor m \rfloor = 8 \] ### Final Answer: The value of \( m \) is \( 8 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - I|6 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - F|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)[m(sinx)/x] is equal to (where m epsilon I and [.] denotes greatest integer function)

Given, lim_(xto0) (sin3x)/(sin7x) .

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate lim_(x to 0) [(2008 "sin x)/(x)] + [(2009 tan x)/(x)] where [x] denotes the greatest integer le x .

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.