Home
Class 12
MATHS
Prove that the points O(0,0,0), A(2.0,0)...

Prove that the points `O(0,0,0), A(2.0,0), B(1,sqrt3,0) and C(1,1/sqrt3,(2sqrt2)/sqrt3)` are the vertices of a regular tetrahedron.,

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the points \( O(0,0,0) \), \( A(2,0,0) \), \( B(1,\sqrt{3},0) \), and \( C\left(1,\frac{1}{\sqrt{3}},\frac{2\sqrt{2}}{\sqrt{3}}\right) \) are the vertices of a regular tetrahedron, we need to show that the distances between all pairs of these points are equal. ### Step 1: Calculate the distance \( OA \) Using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] For points \( O(0,0,0) \) and \( A(2,0,0) \): \[ OA = \sqrt{(2 - 0)^2 + (0 - 0)^2 + (0 - 0)^2} = \sqrt{2^2} = \sqrt{4} = 2 \] ### Step 2: Calculate the distance \( OB \) For points \( O(0,0,0) \) and \( B(1,\sqrt{3},0) \): \[ OB = \sqrt{(1 - 0)^2 + (\sqrt{3} - 0)^2 + (0 - 0)^2} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 3: Calculate the distance \( OC \) For points \( O(0,0,0) \) and \( C\left(1,\frac{1}{\sqrt{3}},\frac{2\sqrt{2}}{\sqrt{3}}\right) \): \[ OC = \sqrt{\left(1 - 0\right)^2 + \left(\frac{1}{\sqrt{3}} - 0\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}} - 0\right)^2} \] Calculating each term: \[ = \sqrt{1^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}}\right)^2} = \sqrt{1 + \frac{1}{3} + \frac{8}{3}} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 4: Calculate the distance \( AB \) For points \( A(2,0,0) \) and \( B(1,\sqrt{3},0) \): \[ AB = \sqrt{(1 - 2)^2 + (\sqrt{3} - 0)^2 + (0 - 0)^2} = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 5: Calculate the distance \( AC \) For points \( A(2,0,0) \) and \( C\left(1,\frac{1}{\sqrt{3}},\frac{2\sqrt{2}}{\sqrt{3}}\right) \): \[ AC = \sqrt{(1 - 2)^2 + \left(\frac{1}{\sqrt{3}} - 0\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}} - 0\right)^2} \] Calculating: \[ = \sqrt{(-1)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}}\right)^2} = \sqrt{1 + \frac{1}{3} + \frac{8}{3}} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 6: Calculate the distance \( BC \) For points \( B(1,\sqrt{3},0) \) and \( C\left(1,\frac{1}{\sqrt{3}},\frac{2\sqrt{2}}{\sqrt{3}}\right) \): \[ BC = \sqrt{(1 - 1)^2 + \left(\frac{1}{\sqrt{3}} - \sqrt{3}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}} - 0\right)^2} \] Calculating: \[ = \sqrt{0 + \left(\frac{1 - 3}{\sqrt{3}}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}}\right)^2} = \sqrt{0 + \left(-\frac{2}{\sqrt{3}}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{3}}\right)^2} \] \[ = \sqrt{\frac{4}{3} + \frac{8}{3}} = \sqrt{4} = 2 \] ### Conclusion Since all distances \( OA, OB, OC, AB, AC, \) and \( BC \) are equal to \( 2 \), we conclude that the points \( O, A, B, \) and \( C \) are the vertices of a regular tetrahedron.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - C|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - D COMPREHENSION I|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - A|90 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If A(1,1), B(sqrt3+1,2) and C(sqrt3,sqrt3+2) are three vertices of a square, then the diagonal through B is

Prove that the tetrahedron with vertices at the points O(0,0,0),\ A(0,1,1), B(1,0,1)a n d\ C(1,1,0) is a regular one.

The orthocentre of a trianlge whose vertices are (0,0) , (sqrt3,0) and (0,sqrt6) is

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

Statement 1: Distance of point D( 1,0,-1) from the plane of points A( 1,-2,0) , B ( 3, 1,2) and C( -1,1,-1) is 8/sqrt229 Statement 2: volume of tetrahedron formed by the points A,B, C and D is sqrt229/ 2

If A(0, 0), B(1, 0) and C(1/2,sqrt(3)/2) then the centre of the circle for which the lines AB,BC, CA are tangents is

Prove that the lines sqrt(3)x+y=0,\ sqrt(3)y+x=0,\ sqrt(3)x+y=1\ a n d\ sqrt(3)y+x=1 form a rhombus.

Prove that tan [7(1)/(2)]^0 = (sqrt(3) - sqrt(2)) (sqrt(2) - 1) .

If in a "Delta"A B C ,\ A=(0,0),\ B=(3,3sqrt(3)), C-=(-3sqrt(3),3) then the vector of magnitude 2sqrt(2) units directed along A O ,\ w h e r e\ O is the circumcentre of A B C is a. (1-sqrt(3)) hat i+(1+sqrt(3)) hat j b. (1+sqrt(3)) hat i+(1-sqrt(3)) hat j c. (1+sqrt(3)) hat i+(sqrt(3)-1) hat j d. none of these

The perimeter of the triangle formed by the points (0,\ 0),\ (1,\ 0) and (0,\ 1) is 1+-sqrt(2) (b) sqrt(2)+1 (c) 3 (d) 2+sqrt(2)

AAKASH INSTITUTE ENGLISH-THREE DIMENSIONAL GEOMETRY -ASSIGNMENT SECTION - B
  1. The shortest distance of the point (1, 3, 5) from x^(2) + y^(2) = 0 ...

    Text Solution

    |

  2. If the sum of the squares of the distances of the point (x, y, z) fr...

    Text Solution

    |

  3. Prove that the points O(0,0,0), A(2.0,0), B(1,sqrt3,0) and C(1,1/sqrt3...

    Text Solution

    |

  4. XY-plane divides the line joining the points (2, 4, 5) and (-4, 3, -...

    Text Solution

    |

  5. If the points (-1, 3, 2), (-4, 2, -2) and (5, 5, y) are collinear, t...

    Text Solution

    |

  6. If the vertices of a triangle be (1, 1, 0), (1, 2, 1) and (-2, 2, -1...

    Text Solution

    |

  7. The distance between the points (1, 4, 5) and (2, 2, 3) is

    Text Solution

    |

  8. The minimum distance of the point (1, 2, 3) from x-axis is

    Text Solution

    |

  9. If the orthocentre and centroid of a triangle are (-3, 5, 1) and (3, ...

    Text Solution

    |

  10. If distances of (-1, 2, 3) from x, y, z axis are d1,d2, d3 respectivel...

    Text Solution

    |

  11. Let Aequiv(1, 2, 3) B equiv (3, 4, 5) then

    Text Solution

    |

  12. The angle between the lines 2x=3y=-z and 6x=-y=-4z is

    Text Solution

    |

  13. The distance of the point P(a,b,c) from the x-axis is

    Text Solution

    |

  14. The equation of a line passing through (a, b, c) and parallel tp z-...

    Text Solution

    |

  15. Find the vector equation of line passing through the point (1,2,-4)...

    Text Solution

    |

  16. A line with directional cosines prontional to 2, 1,2 meets each of the...

    Text Solution

    |

  17. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |

  18. The line vecr=alpha(hati+hatj+hatk)+3hatk and vecr=beta(hati-2hatj+hat...

    Text Solution

    |

  19. If P be the point (2,6, 3) then the equation of the plane through P, a...

    Text Solution

    |

  20. Statement-I P is a point (a, b, c). Let A, B, C be the images of P in ...

    Text Solution

    |