Home
Class 12
MATHS
Let vecn be a unit vector perpendicular ...

Let `vecn` be a unit vector perpendicular to the plane
containing the point whose position vectors are
`veca, vecb and vecc` and, if
`abs([(vecr -veca)(vecb-veca)vecn])=lambda abs(vecrxx(vecb-veca)-vecaxxvecb)` then `lambda` is
equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and derive the value of \(\lambda\). ### Step 1: Write down the given condition We start with the condition provided in the question: \[ |\vec{r} - \vec{a}| \cdot |\vec{b} - \vec{a}| \cdot \vec{n} = \lambda |\vec{r} \times (\vec{b} - \vec{a}) - \vec{a} \times \vec{b}| \] ### Step 2: Analyze the left-hand side (LHS) The left-hand side can be expressed as: \[ |\vec{r} - \vec{a}| \cdot |\vec{b} - \vec{a}| \cdot \vec{n} \] Since \(\vec{n}\) is a unit vector perpendicular to the plane formed by \(\vec{a}, \vec{b}, \vec{c}\), we can rewrite this as: \[ |\vec{r} - \vec{a}| \cdot |\vec{b} - \vec{a}| \] Thus, we have: \[ |\vec{n} \cdot ((\vec{r} - \vec{a}) \times (\vec{b} - \vec{a}))| \] ### Step 3: Analyze the right-hand side (RHS) The right-hand side is: \[ \lambda |\vec{r} \times (\vec{b} - \vec{a}) - \vec{a} \times \vec{b}| \] This represents the magnitude of the vector formed by the cross product of \(\vec{r}\) with \((\vec{b} - \vec{a})\) minus the cross product of \(\vec{a}\) and \(\vec{b}\). ### Step 4: Equate LHS and RHS Equating both sides, we have: \[ |\vec{n} \cdot ((\vec{r} - \vec{a}) \times (\vec{b} - \vec{a}))| = \lambda |\vec{r} \times (\vec{b} - \vec{a}) - \vec{a} \times \vec{b}| \] ### Step 5: Compare coefficients By comparing the coefficients of both sides, we can deduce that: \[ \lambda = |\vec{n}| \] Since \(\vec{n}\) is a unit vector, we have: \[ |\vec{n}| = 1 \] Thus, we find: \[ \lambda = 1 \] ### Conclusion The value of \(\lambda\) is: \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - C|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - D COMPREHENSION I|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - A|90 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

The plane vecr cdot vecn = q will contain the line vecr = veca + lambda vecb if

If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is:

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

AAKASH INSTITUTE ENGLISH-THREE DIMENSIONAL GEOMETRY -ASSIGNMENT SECTION - B
  1. The equation of the plane which passes through the points (2, 1, -1)...

    Text Solution

    |

  2. Find the image of the point (1,3,4) in the plane 2x-y+z+3=0.

    Text Solution

    |

  3. Length of the perpendicular from origin to the plane passing through...

    Text Solution

    |

  4. If the plane x- 3y +5z= d passes through the point (1, 2, 4), then the...

    Text Solution

    |

  5. The plane x / 2 + y / 3 + z / 4 = 1 cuts the co-ordinate axes in A, B,...

    Text Solution

    |

  6. The position vectors of points A and B are hati - hatj + 3hatk and 3h...

    Text Solution

    |

  7. The vector equation of the plane through the point (2, 1, -1) and pass...

    Text Solution

    |

  8. Find the vector equation of line passing through the point (1,2,-4)...

    Text Solution

    |

  9. The line x + 2y - z - 3 = 0 = x + 3y - 2 - 4 is parallel to

    Text Solution

    |

  10. The shortest distance between the lines 2x + y + z - 1 = 0 = 3x + y + ...

    Text Solution

    |

  11. The lines x + y + z - 3 = 0 = 2x - y + 5z - 6 and x - y - z + 1 = 0 = ...

    Text Solution

    |

  12. The line vecr= veca + lambda vecb will not meet the plane vecr cdot ...

    Text Solution

    |

  13. The plane vecr cdot vecn = q will contain the line vecr = veca + lambd...

    Text Solution

    |

  14. Two system of rectangular axes have the same origin. IF a plane cuts t...

    Text Solution

    |

  15. Find the length of the perpendicular from the point (1,2,3) to the ...

    Text Solution

    |

  16. A variable plane which remains at q constant distance 3p from the orig...

    Text Solution

    |

  17. The planes 2x + 5y + 3z = 0, x-y+4z = 2 and7y-5z + 4 = 0

    Text Solution

    |

  18. Let vecn be a unit vector perpendicular to the plane containing the ...

    Text Solution

    |

  19. The coordinates of the point P on the line vecr=(hati+hatj+hatk)+lamda...

    Text Solution

    |

  20. The projection of the line segment joining the Points (1, 2, 3) and ...

    Text Solution

    |