Home
Class 12
MATHS
If the centroid of a triangle with verti...

If the centroid of a triangle with vertices `(alpha, 1, 3), (-2, beta, -5) and (4, 7, gamma)` is the origin then `alpha beta gamma` is equal to …..........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \) such that the centroid of the triangle formed by the vertices \( ( \alpha, 1, 3) \), \( (-2, \beta, -5) \), and \( (4, 7, \gamma) \) is the origin \( (0, 0, 0) \). ### Step-by-Step Solution: 1. **Understanding the Centroid Formula**: The coordinates of the centroid \( (G_x, G_y, G_z) \) of a triangle with vertices \( (x_1, y_1, z_1) \), \( (x_2, y_2, z_2) \), and \( (x_3, y_3, z_3) \) are given by: \[ G_x = \frac{x_1 + x_2 + x_3}{3}, \quad G_y = \frac{y_1 + y_2 + y_3}{3}, \quad G_z = \frac{z_1 + z_2 + z_3}{3} \] 2. **Setting Up the Equations**: Given the vertices: - \( A(\alpha, 1, 3) \) - \( B(-2, \beta, -5) \) - \( C(4, 7, \gamma) \) We know the centroid is the origin, so: \[ G_x = 0, \quad G_y = 0, \quad G_z = 0 \] This leads to the following equations: - For \( G_x \): \[ \frac{\alpha - 2 + 4}{3} = 0 \implies \alpha + 2 = 0 \implies \alpha = -2 \] - For \( G_y \): \[ \frac{1 + \beta + 7}{3} = 0 \implies 1 + \beta + 7 = 0 \implies \beta + 8 = 0 \implies \beta = -8 \] - For \( G_z \): \[ \frac{3 - 5 + \gamma}{3} = 0 \implies 3 - 5 + \gamma = 0 \implies -2 + \gamma = 0 \implies \gamma = 2 \] 3. **Calculating the Product**: Now we have: - \( \alpha = -2 \) - \( \beta = -8 \) - \( \gamma = 2 \) We need to find \( \alpha \cdot \beta \cdot \gamma \): \[ \alpha \cdot \beta \cdot \gamma = (-2) \cdot (-8) \cdot 2 \] Calculating this: \[ = 16 \cdot 2 = 32 \] ### Final Answer: Thus, the value of \( \alpha \cdot \beta \cdot \gamma \) is \( \boxed{32} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - H|4 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If the centroid of triangles formed by the vertices (1, 2, 3), (2, 1, 0) and (3, 1, 4) is (alpha, beta, gamma) then the value of [alpha]+[beta]+[gamma], where [ ] represents the greatest integer function, is _______.

The circumcentre of a triangle having vertices A(a,atan alpha),B(b,btan beta),C(c,ctan gamma) is at origin, where alpha+beta+gamma =pi . Then the orthocentre lies on

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If tan alpha, tan beta, tan gamma are the roots of equation x^3 - 3ax^2 + 3bx - 1 =0 , find the centroid of the triangle whose vertices are (tan alpha, cot alpha), (tan beta, cot beta) and (tan gamma, cot gamma) .

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

designated by alpha, beta, gamma and delta are in order:

If alpha, beta gamma are the real roots of the equation x^(3)-3px^(2)+3qx-1=0 , then find the centroid of the triangle whose vertices are (alpha, (1)/(alpha)), (beta, (1)/(beta)) and (gamma, (1)/(gamma)) .

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in