Home
Class 12
MATHS
If a line makes angles alpha, beta, gamm...

If a line makes angles `alpha, beta, gamma, delta` with the diafonals of a cubes then the value of `9(cos 2alpha + cos 2beta + cos2gamma` `+ cos 2 delta )^(2)` equals ….......

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 9(\cos 2\alpha + \cos 2\beta + \cos 2\gamma + \cos 2\delta)^2 \). ### Step 1: Use the identity for cosine We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Using this identity, we can rewrite each cosine term: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \] \[ \cos 2\beta = 2\cos^2 \beta - 1 \] \[ \cos 2\gamma = 2\cos^2 \gamma - 1 \] \[ \cos 2\delta = 2\cos^2 \delta - 1 \] ### Step 2: Substitute into the expression Now substituting these into the expression: \[ \cos 2\alpha + \cos 2\beta + \cos 2\gamma + \cos 2\delta = (2\cos^2 \alpha - 1) + (2\cos^2 \beta - 1) + (2\cos^2 \gamma - 1) + (2\cos^2 \delta - 1) \] This simplifies to: \[ = 2(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta) - 4 \] ### Step 3: Use the property of cosines From the problem, we know that: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3} \] Substituting this into our expression gives: \[ = 2\left(\frac{4}{3}\right) - 4 = \frac{8}{3} - 4 = \frac{8}{3} - \frac{12}{3} = -\frac{4}{3} \] ### Step 4: Final calculation Now substituting back into our original expression: \[ 9\left(-\frac{4}{3}\right)^2 = 9 \cdot \frac{16}{9} = 16 \] ### Conclusion Thus, the final value is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - H|4 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

A line makes angles alpha,beta,gamma and delta with the diagonals of a cube, prove that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4/3

A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a cube. Show that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4//3.

A line makes angles alpha,""""beta,""""gamma and delta with the diagonals of a cube, prove that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4/3

If a line makes angle "alpha","beta\ and\ gamma" with the coordinate axes, find the value of "cos"2"alpha"+"cos"2"beta"+"cos"2"gamma"dot

If line makes angle alpha, beta, gamma, delta with four diagonals of a cube, then the value of sin^2alpha+sin^2beta+sin^2gamma+sin^2delta is (A) 4/3 (B) 1 (C) 8/3 (D) 7/3

The value of cos^(2) alpha +cos^(2) beta +cos^(2) gamma is _____ .

If a line makes angles alpha,beta,gamma with the axes respectively tehn cos2alpha+cos2beta+cos2gamma= -2 b. -1 c. 1 d. 2

If a line makes angles alpha, beta, gamma with the axes then cos2alpha +cos2beta+cos2gamma = (A) -2 (B) -1 (C) 1 (D) 2

If the normals at alpha, beta,gamma and delta on an ellipse are concurrent then the value of (sigma cos alpha)(sigma sec alpha) I

If the direction angles of a line are alpha, beta and gamma respectively, then cos 2 alpha + cos 2 beta + cos 2gamma is equal to