Home
Class 12
MATHS
If d is the shortest distance between th...

If d is the shortest distance between the lines `vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk)` and
`vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk)` then `125d^(2)` is equal to ____________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the shortest distance \( d \) between the two given lines and then compute \( 125d^2 \). ### Step 1: Identify the lines and their parameters The first line is given by: \[ \vec{r_1} = (3\hat{i} + 5\hat{j} + 7\hat{k}) + \lambda (\hat{i} + 2\hat{j} + \hat{k}) \] This means: - Point on line 1, \( \vec{a_1} = 3\hat{i} + 5\hat{j} + 7\hat{k} \) - Direction vector of line 1, \( \vec{b_1} = \hat{i} + 2\hat{j} + \hat{k} \) The second line is given by: \[ \vec{r_2} = (-\hat{i} - \hat{j} - \hat{k}) + \mu (7\hat{i} - 6\hat{j} + \hat{k}) \] This means: - Point on line 2, \( \vec{a_2} = -\hat{i} - \hat{j} - \hat{k} \) - Direction vector of line 2, \( \vec{b_2} = 7\hat{i} - 6\hat{j} + \hat{k} \) ### Step 2: Check if the lines are parallel, intersecting, or skew To check if the lines are parallel, we need to see if the direction vectors \( \vec{b_1} \) and \( \vec{b_2} \) are proportional. We can do this by checking if there exists a scalar \( k \) such that: \[ \vec{b_1} = k \vec{b_2} \] Calculating the cross product \( \vec{b_1} \times \vec{b_2} \) will help us determine if they are parallel. ### Step 3: Calculate the cross product \( \vec{b_1} \times \vec{b_2} \) \[ \vec{b_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \vec{b_2} = \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix} \] The cross product is calculated using the determinant: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 7 & -6 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i}(2 \cdot 1 - 1 \cdot (-6)) - \hat{j}(1 \cdot 1 - 1 \cdot 7) + \hat{k}(1 \cdot (-6) - 2 \cdot 7) \] \[ = \hat{i}(2 + 6) - \hat{j}(1 - 7) + \hat{k}(-6 - 14) \] \[ = 8\hat{i} + 6\hat{j} - 20\hat{k} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of \( \vec{b_1} \times \vec{b_2} \) is: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{8^2 + 6^2 + (-20)^2} = \sqrt{64 + 36 + 400} = \sqrt{500} = 5\sqrt{10} \] ### Step 5: Calculate \( \vec{a_2} - \vec{a_1} \) \[ \vec{a_2} - \vec{a_1} = (-\hat{i} - \hat{j} - \hat{k}) - (3\hat{i} + 5\hat{j} + 7\hat{k}) = (-4\hat{i} - 6\hat{j} - 8\hat{k}) \] ### Step 6: Calculate the dot product \( (\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1}) \) \[ (\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1}) = (8\hat{i} + 6\hat{j} - 20\hat{k}) \cdot (-4\hat{i} - 6\hat{j} - 8\hat{k}) \] Calculating the dot product: \[ = 8(-4) + 6(-6) + (-20)(-8) = -32 - 36 + 160 = 92 \] ### Step 7: Calculate the shortest distance \( d \) Using the formula for the shortest distance: \[ d = \frac{|(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1})|}{|\vec{b_1} \times \vec{b_2}|} = \frac{92}{5\sqrt{10}} \] ### Step 8: Calculate \( 125d^2 \) First, calculate \( d^2 \): \[ d^2 = \left(\frac{92}{5\sqrt{10}}\right)^2 = \frac{8464}{250} = \frac{8464}{250} \] Now, calculate \( 125d^2 \): \[ 125d^2 = 125 \cdot \frac{8464}{250} = \frac{125 \cdot 8464}{250} = \frac{1058000}{250} = 2116 \] Thus, the final answer is: \[ \boxed{2116} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - H|4 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find shortest distance between the line vecr = (5hati + 7hatj + 3hatk )+lambda (5hati-6hatj+2hatk)and vecr = (9hati+13hatj+15hatk)+s (-3hati+hatj-hatk)

Find the shortest distance between the lines vecr = hati+hatj+lambda(2hati-hatj+hatk) and vecr = (2 hati+hatj-hatk) + mu (3hati-5hatj + 2hatk)

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+lamda(2hati+hatj=2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .

Find the shortest distance between the following pair of line: vecr=hati+2hatj+hatk+lamda(hati-hatj+hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Shortest distance between the lines: vecr=(4hati-hatj)+lambda(hati+2hatj-3hatk) and vecr=(hati-hatj+2hatk)+u(2hati+4hatj-5hatk)