Home
Class 12
MATHS
Prove that the vectgors 2hati-hatj+hatk,...

Prove that the vectgors `2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4hatj-4hatk` form a righat angled triangle.

A

Equilateral triangle

B

Isosceles triangle

C

Right triangle

D

Right Isosceles triangle

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the vectors \( \mathbf{A} = 2\hat{i} - \hat{j} + \hat{k} \), \( \mathbf{B} = \hat{i} - 3\hat{j} - 5\hat{k} \), and \( \mathbf{C} = 3\hat{i} - 4\hat{j} - 4\hat{k} \) form a right-angled triangle, we will follow these steps: ### Step 1: Find the position vectors Let: - \( \mathbf{A} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \mathbf{B} = \hat{i} - 3\hat{j} - 5\hat{k} \) - \( \mathbf{C} = 3\hat{i} - 4\hat{j} - 4\hat{k} \) ### Step 2: Calculate the vectors representing the sides of the triangle 1. **Vector \( \mathbf{AB} \)**: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) \] \[ = (\hat{i} - 2\hat{i}) + (-3\hat{j} + \hat{j}) + (-5\hat{k} - \hat{k}) \] \[ = -\hat{i} - 2\hat{j} - 6\hat{k} \] 2. **Vector \( \mathbf{BC} \)**: \[ \mathbf{BC} = \mathbf{C} - \mathbf{B} = (3\hat{i} - 4\hat{j} - 4\hat{k}) - (\hat{i} - 3\hat{j} - 5\hat{k}) \] \[ = (3\hat{i} - \hat{i}) + (-4\hat{j} + 3\hat{j}) + (-4\hat{k} + 5\hat{k}) \] \[ = 2\hat{i} - \hat{j} + \hat{k} \] 3. **Vector \( \mathbf{CA} \)**: \[ \mathbf{CA} = \mathbf{A} - \mathbf{C} = (2\hat{i} - \hat{j} + \hat{k}) - (3\hat{i} - 4\hat{j} - 4\hat{k}) \] \[ = (2\hat{i} - 3\hat{i}) + (-\hat{j} + 4\hat{j}) + (\hat{k} + 4\hat{k}) \] \[ = -\hat{i} + 3\hat{j} + 5\hat{k} \] ### Step 3: Calculate the magnitudes of the vectors 1. **Magnitude of \( \mathbf{AB} \)**: \[ |\mathbf{AB}| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{1 + 4 + 36} = \sqrt{41} \] 2. **Magnitude of \( \mathbf{BC} \)**: \[ |\mathbf{BC}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] 3. **Magnitude of \( \mathbf{CA} \)**: \[ |\mathbf{CA}| = \sqrt{(-1)^2 + (3)^2 + (5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35} \] ### Step 4: Verify the Pythagorean theorem To check if the triangle is right-angled, we verify if: \[ |\mathbf{AB}|^2 = |\mathbf{BC}|^2 + |\mathbf{CA}|^2 \] Calculating: \[ |\mathbf{AB}|^2 = 41, \quad |\mathbf{BC}|^2 = 6, \quad |\mathbf{CA}|^2 = 35 \] \[ |\mathbf{BC}|^2 + |\mathbf{CA}|^2 = 6 + 35 = 41 \] Since \( |\mathbf{AB}|^2 = |\mathbf{BC}|^2 + |\mathbf{CA}|^2 \), the triangle is right-angled at point \( B \). ### Conclusion Thus, the vectors \( \mathbf{A} \), \( \mathbf{B} \), and \( \mathbf{C} \) form a right-angled triangle. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Using dot product of vectors show that the vectors 2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4hatj-4hatk form a righat angled triangle

Show that vectors 3hati-2hatj+2hatk,hati-3hatj+4hatk and 2hati-hatj-2hatk form a right angled triangle

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hatj+hatj-4hatk form a right angled triangle.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Prove that the vecotos 3hati+5hatj+2hatk, 2hati-3hatj-5hatk and 5hati+2hatj-3hatk form the sides of an equlateral triangle.

Prove that the points hati-hatj, 4hati-3hatj+ hatk and 2hati-4hatj+5hatk are the vertices of a right angled triangle.

Show that the vectors 2hati-hatj+hatk and hati-3hatj-5hatk are at righat angles.

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

Prove that points hati+2hatj-3hatk, 2hati-hatj+hatk and 2hati+5hatj-hatk form a triangle in space.

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. For any two vectors veca and vecb, which one of the following is not t...

    Text Solution

    |

  2. Find a unit vector in the direction of vector vecb = hati + 2hatj + 3h...

    Text Solution

    |

  3. Prove that the vectgors 2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4h...

    Text Solution

    |

  4. The magnitude of the sum of two vectors is equal to the difference in ...

    Text Solution

    |

  5. What is the angle between veca and the resultant of veca+vecb and veca...

    Text Solution

    |

  6. What is the magnitude of the scalar product of the following vectors ...

    Text Solution

    |

  7. Given that 0.4hati+0.8hatj+b hatk is a unit vector . What is the valu...

    Text Solution

    |

  8. ABCD is parallelogram. If L and M are the middle points of BC and CD, ...

    Text Solution

    |

  9. If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati, a unit vector par...

    Text Solution

    |

  10. p1 hati+p2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  11. If vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb, the lengt...

    Text Solution

    |

  12. Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+...

    Text Solution

    |

  13. If vecaxxvecb=vecaxxvec c,veca ne 0, then

    Text Solution

    |

  14. Given two vectors veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk and...

    Text Solution

    |

  15. The area of parallelogram whose diagonals coincide with the following ...

    Text Solution

    |

  16. Let veca , vecb and vecc be three non-zero vectors such that veca + ve...

    Text Solution

    |

  17. If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

    Text Solution

    |

  18. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  19. The value of the following expression hati.(hatjxxhatk)+j.(hatixxhat...

    Text Solution

    |

  20. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |