Home
Class 12
MATHS
ABCD is parallelogram. If L and M are th...

`ABCD` is parallelogram. If `L and M` are the middle points of BC and CD, then `bar(AL)+bar(AM)` equals

A

`(1)/(2)vecAC`

B

`(2)/(3)vecAC`

C

`(3)/(2)vecAC`

D

`(3)/(4)vecAC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the vectors \(\bar{AL} + \bar{AM}\) in the context of the parallelogram \(ABCD\) where \(L\) and \(M\) are the midpoints of sides \(BC\) and \(CD\) respectively. ### Step-by-step Solution: 1. **Define the Position Vectors**: Let the position vector of point \(A\) be \(\vec{a}\), point \(B\) be \(\vec{b}\), point \(C\) be \(\vec{c}\), and point \(D\) be \(\vec{d}\). Since \(ABCD\) is a parallelogram, we have: \[ \vec{c} = \vec{a} + \vec{b} \quad \text{(since } \vec{c} = \vec{a} + \vec{b} \text{)} \] \[ \vec{d} = \vec{b} + \vec{a} \quad \text{(since } \vec{d} = \vec{b} + \vec{a} \text{)} \] 2. **Find the Midpoints \(L\) and \(M\)**: The position vector of midpoint \(L\) of \(BC\) is given by: \[ \vec{L} = \frac{\vec{b} + \vec{c}}{2} = \frac{\vec{b} + (\vec{a} + \vec{b})}{2} = \frac{2\vec{b} + \vec{a}}{2} = \vec{b} + \frac{\vec{a}}{2} \] The position vector of midpoint \(M\) of \(CD\) is given by: \[ \vec{M} = \frac{\vec{c} + \vec{d}}{2} = \frac{(\vec{a} + \vec{b}) + (\vec{b} + \vec{a})}{2} = \frac{2\vec{a} + 2\vec{b}}{2} = \vec{a} + \vec{b} \] 3. **Calculate Vectors \(\bar{AL}\) and \(\bar{AM}\)**: The vector \(\bar{AL}\) is: \[ \bar{AL} = \vec{L} - \vec{A} = \left(\vec{b} + \frac{\vec{a}}{2}\right) - \vec{a} = \vec{b} - \frac{\vec{a}}{2} \] The vector \(\bar{AM}\) is: \[ \bar{AM} = \vec{M} - \vec{A} = (\vec{a} + \vec{b}) - \vec{a} = \vec{b} \] 4. **Sum the Vectors**: Now, we add \(\bar{AL}\) and \(\bar{AM}\): \[ \bar{AL} + \bar{AM} = \left(\vec{b} - \frac{\vec{a}}{2}\right) + \vec{b} = 2\vec{b} - \frac{\vec{a}}{2} \] 5. **Express in terms of \(\vec{AC}\)**: Since \(\vec{AC} = \vec{c} - \vec{a} = (\vec{a} + \vec{b}) - \vec{a} = \vec{b}\), we can express the final result in terms of \(\vec{AC}\): \[ \bar{AL} + \bar{AM} = \frac{3}{2}\vec{AC} \] ### Final Result: Thus, we conclude that: \[ \bar{AL} + \bar{AM} = \frac{3}{2} \vec{AC} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

ABCD is a parallelogram E and F are the middle points of AD and CD respectively. Express vec(BE) and vec(BF) in terms of veca and vecb , where vec(BA)=vecaand vec(BC)=vecb .

ABCD is a parallelogram. If AB = 2AD and P is the mid-point of CD, prove that angleAPB = 90^(@)

In the Boolean algebra bar(A).bar(B) equals

Given a parallelogram ABCD where X and Y are the mid-points of the sides BC and CD respectively . Prove that: ar (Delta AXY) = (3)/(8) xx ar (//gm) ABCD

If P and Q are the middle points of the sides BC and CD of the parallelogram ABCD, then AP+AQ is equal to

In rectangle ABCD below , bar (BC) is 16 inches long and bar(CD ) is 12 inches long . Points E,F and G are the midpoints of bar(AD ) , bar(AB ) and bar(BC ) respectively . What is the perimeter ,in inches , of pentagon CDEFG ?

ABCD is a parallelogram. E is the mid-point of AB and F is the mid-point of CD. GH is any line that intersects AD, EF and BC at G, P and H respectively. Prove that : GP=PH

In the adjoining figure ABCD is a parallelogram, ABM is a line segment and E is the mid-point of BC. Prove that : (i) DeltaDCE cong DeltaMBe (ii) AB = BM (iii) AM=2DC

ABCD is a parallelogram E is mid-point of AB and DE bisects angle D. Prove that BC= BE

In the adjoining figure, ABCD is a quadrilateral. M and N are the points on AD and CD respectively such that AB = BC, angleABM=angleCBN and angleMBD=angleNBD . Prove that BM = BN .

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. What is the magnitude of the scalar product of the following vectors ...

    Text Solution

    |

  2. Given that 0.4hati+0.8hatj+b hatk is a unit vector . What is the valu...

    Text Solution

    |

  3. ABCD is parallelogram. If L and M are the middle points of BC and CD, ...

    Text Solution

    |

  4. If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati, a unit vector par...

    Text Solution

    |

  5. p1 hati+p2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  6. If vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb, the lengt...

    Text Solution

    |

  7. Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+...

    Text Solution

    |

  8. If vecaxxvecb=vecaxxvec c,veca ne 0, then

    Text Solution

    |

  9. Given two vectors veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk and...

    Text Solution

    |

  10. The area of parallelogram whose diagonals coincide with the following ...

    Text Solution

    |

  11. Let veca , vecb and vecc be three non-zero vectors such that veca + ve...

    Text Solution

    |

  12. If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

    Text Solution

    |

  13. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  14. The value of the following expression hati.(hatjxxhatk)+j.(hatixxhat...

    Text Solution

    |

  15. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  16. If |vecaxxvecb|=2,|veca.vecb|=2, then |veca|^(2)|vecb|^(2) is equal to

    Text Solution

    |

  17. |(vecaxxvecb)|^(2) is eqaul to

    Text Solution

    |

  18. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  19. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  20. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |