Home
Class 12
MATHS
If vecOA=veca,vecOB=vecb,vecOC=2veca+3ve...

If `vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb`, the length of `vecOA` is three times the length of `vecOB` and `vecOA` is perpendicular to `vecDB`, then `(vecBDxxvecAC).(vecODxxvecOC)` is

A

`7vecaxxvecb|^(2)`

B

`42|vecaxxvecb|^(2)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start by defining the vectors based on the information given in the question. ### Step 1: Define the vectors Given: - \( \vec{OA} = \vec{a} \) - \( \vec{OB} = \vec{b} \) - \( \vec{OC} = 2\vec{a} + 3\vec{b} \) - \( \vec{OD} = \vec{a} - 2\vec{b} \) ### Step 2: Use the length condition We know that the length of \( \vec{OA} \) is three times the length of \( \vec{OB} \): \[ |\vec{a}| = 3|\vec{b}| \] Let \( |\vec{b}| = k \), then \( |\vec{a}| = 3k \). ### Step 3: Find \( \vec{BD} \) and \( \vec{AC} \) - The vector \( \vec{BD} \) can be calculated as: \[ \vec{BD} = \vec{OD} - \vec{OB} = (\vec{a} - 2\vec{b}) - \vec{b} = \vec{a} - 3\vec{b} \] - The vector \( \vec{AC} \) can be calculated as: \[ \vec{AC} = \vec{OC} - \vec{OA} = (2\vec{a} + 3\vec{b}) - \vec{a} = \vec{a} + 3\vec{b} \] ### Step 4: Compute \( \vec{BD} \times \vec{AC} \) Now we compute the cross product: \[ \vec{BD} \times \vec{AC} = (\vec{a} - 3\vec{b}) \times (\vec{a} + 3\vec{b}) \] Using the distributive property of the cross product: \[ = \vec{a} \times \vec{a} + 3\vec{a} \times \vec{b} - 3\vec{b} \times \vec{a} - 9\vec{b} \times \vec{b} \] Since \( \vec{u} \times \vec{u} = \vec{0} \): \[ = 0 + 3\vec{a} \times \vec{b} - 3\vec{b} \times \vec{a} + 0 \] Using the property \( \vec{b} \times \vec{a} = -\vec{a} \times \vec{b} \): \[ = 3\vec{a} \times \vec{b} + 3\vec{a} \times \vec{b} = 6\vec{a} \times \vec{b} \] ### Step 5: Compute \( \vec{OD} \times \vec{OC} \) Now we compute the cross product: \[ \vec{OD} \times \vec{OC} = (\vec{a} - 2\vec{b}) \times (2\vec{a} + 3\vec{b}) \] Using the distributive property: \[ = \vec{a} \times 2\vec{a} + 3\vec{a} \times \vec{b} - 4\vec{b} \times \vec{a} - 6\vec{b} \times \vec{b} \] Again, using \( \vec{u} \times \vec{u} = \vec{0} \): \[ = 0 + 3\vec{a} \times \vec{b} - 4\vec{b} \times \vec{a} + 0 \] Using \( \vec{b} \times \vec{a} = -\vec{a} \times \vec{b} \): \[ = 3\vec{a} \times \vec{b} + 4\vec{a} \times \vec{b} = 7\vec{a} \times \vec{b} \] ### Step 6: Compute the dot product Now we need to find: \[ (\vec{BD} \times \vec{AC}) \cdot (\vec{OD} \times \vec{OC}) = (6\vec{a} \times \vec{b}) \cdot (7\vec{a} \times \vec{b}) \] Using the property of dot product: \[ = 6 \cdot 7 \cdot |\vec{a} \times \vec{b}|^2 = 42 |\vec{a} \times \vec{b}|^2 \] ### Final Answer Thus, the final answer is: \[ 42 |\vec{a} \times \vec{b}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

(vecA+2vecB).(2vecA-3vecB) :-

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati, a unit vector par...

    Text Solution

    |

  2. p1 hati+p2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  3. If vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb, the lengt...

    Text Solution

    |

  4. Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+...

    Text Solution

    |

  5. If vecaxxvecb=vecaxxvec c,veca ne 0, then

    Text Solution

    |

  6. Given two vectors veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk and...

    Text Solution

    |

  7. The area of parallelogram whose diagonals coincide with the following ...

    Text Solution

    |

  8. Let veca , vecb and vecc be three non-zero vectors such that veca + ve...

    Text Solution

    |

  9. If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

    Text Solution

    |

  10. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  11. The value of the following expression hati.(hatjxxhatk)+j.(hatixxhat...

    Text Solution

    |

  12. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  13. If |vecaxxvecb|=2,|veca.vecb|=2, then |veca|^(2)|vecb|^(2) is equal to

    Text Solution

    |

  14. |(vecaxxvecb)|^(2) is eqaul to

    Text Solution

    |

  15. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  16. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  17. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  18. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  19. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  20. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |