Home
Class 12
MATHS
Let veca=3hati-hatj, vecb=hati-2hatj, ve...

Let `veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj` and `vecp=veca+vecb+vec c`. Then `vecP` in terms of `veca` and `vecb` is

A

`2veca+3vecb`

B

`-2veca-3vecb`

C

`-2veca+3vecb`

D

`2veca-3hatb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{P}\) in terms of \(\vec{a}\) and \(\vec{b}\). Given: \[ \vec{a} = 3\hat{i} - \hat{j} \] \[ \vec{b} = \hat{i} - 2\hat{j} \] \[ \vec{c} = -\hat{i} + 7\hat{j} \] The vector \(\vec{P}\) is defined as: \[ \vec{P} = \vec{a} + \vec{b} + \vec{c} \] ### Step 1: Calculate \(\vec{P}\) Substituting the values of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): \[ \vec{P} = (3\hat{i} - \hat{j}) + (\hat{i} - 2\hat{j}) + (-\hat{i} + 7\hat{j}) \] ### Step 2: Combine the \(\hat{i}\) components Combining the \(\hat{i}\) components: \[ 3\hat{i} + \hat{i} - \hat{i} = (3 + 1 - 1)\hat{i} = 3\hat{i} \] ### Step 3: Combine the \(\hat{j}\) components Combining the \(\hat{j}\) components: \[ -\hat{j} - 2\hat{j} + 7\hat{j} = (-1 - 2 + 7)\hat{j} = 4\hat{j} \] ### Step 4: Write \(\vec{P}\) in terms of \(\hat{i}\) and \(\hat{j}\) Thus, we have: \[ \vec{P} = 3\hat{i} + 4\hat{j} \] ### Step 5: Express \(\vec{P}\) in terms of \(\vec{a}\) and \(\vec{b}\) Now, we need to express \(\vec{P}\) in terms of \(\vec{a}\) and \(\vec{b}\). We will check the options provided: 1. **Option 1:** \(2\vec{a} + 3\vec{b}\) \[ 2\vec{a} = 2(3\hat{i} - \hat{j}) = 6\hat{i} - 2\hat{j} \] \[ 3\vec{b} = 3(\hat{i} - 2\hat{j}) = 3\hat{i} - 6\hat{j} \] \[ 2\vec{a} + 3\vec{b} = (6\hat{i} - 2\hat{j}) + (3\hat{i} - 6\hat{j}) = 9\hat{i} - 8\hat{j} \quad \text{(not equal to } \vec{P}\text{)} \] 2. **Option 2:** \(-2\vec{a} - 3\vec{b}\) \[ -2\vec{a} = -2(3\hat{i} - \hat{j}) = -6\hat{i} + 2\hat{j} \] \[ -3\vec{b} = -3(\hat{i} - 2\hat{j}) = -3\hat{i} + 6\hat{j} \] \[ -2\vec{a} - 3\vec{b} = (-6\hat{i} + 2\hat{j}) + (-3\hat{i} + 6\hat{j}) = -9\hat{i} + 8\hat{j} \quad \text{(not equal to } \vec{P}\text{)} \] 3. **Option 3:** \(-2\vec{a} + 3\vec{b}\) \[ -2\vec{a} = -6\hat{i} + 2\hat{j} \] \[ 3\vec{b} = 3\hat{i} - 6\hat{j} \] \[ -2\vec{a} + 3\vec{b} = (-6\hat{i} + 2\hat{j}) + (3\hat{i} - 6\hat{j}) = -3\hat{i} - 4\hat{j} \quad \text{(not equal to } \vec{P}\text{)} \] 4. **Option 4:** \(2\vec{a} - 3\vec{b}\) \[ 2\vec{a} = 6\hat{i} - 2\hat{j} \] \[ -3\vec{b} = -3\hat{i} + 6\hat{j} \] \[ 2\vec{a} - 3\vec{b} = (6\hat{i} - 2\hat{j}) + (-3\hat{i} + 6\hat{j}) = 3\hat{i} + 4\hat{j} \quad \text{(this is equal to } \vec{P}\text{)} \] Thus, the correct expression for \(\vec{P}\) in terms of \(\vec{a}\) and \(\vec{b}\) is: \[ \vec{P} = 2\vec{a} - 3\vec{b} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvecc=lamda veca+mu vecb , then lamda+mu=

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk,vecb=2hati+hatj and vecc=3hatj-2hatk. Let vecx,vecy and vecz be three vectors in the plane of veca,vecb;vecb,vec;vecc,veca, respectively. Then

A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk,vecb=2hati+hatj and vecc=3hatj-2hatk. Let vecx,vecy and vecz be three vectors in the plane of veca,vecb;vecb,vec;vecc,veca, respectively. Then

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. p1 hati+p2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  2. If vecOA=veca,vecOB=vecb,vecOC=2veca+3vecb,vecOD=veca-2vecb, the lengt...

    Text Solution

    |

  3. Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+...

    Text Solution

    |

  4. If vecaxxvecb=vecaxxvec c,veca ne 0, then

    Text Solution

    |

  5. Given two vectors veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk and...

    Text Solution

    |

  6. The area of parallelogram whose diagonals coincide with the following ...

    Text Solution

    |

  7. Let veca , vecb and vecc be three non-zero vectors such that veca + ve...

    Text Solution

    |

  8. If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

    Text Solution

    |

  9. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  10. The value of the following expression hati.(hatjxxhatk)+j.(hatixxhat...

    Text Solution

    |

  11. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  12. If |vecaxxvecb|=2,|veca.vecb|=2, then |veca|^(2)|vecb|^(2) is equal to

    Text Solution

    |

  13. |(vecaxxvecb)|^(2) is eqaul to

    Text Solution

    |

  14. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  15. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  16. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  17. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  18. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  19. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  20. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |