Home
Class 12
MATHS
Given two vectors veca=2hati-3hatj+6ha...

Given two vectors
`veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk` and
`lambda=("the projection of "veca on vecb)/("the projection of " vecb on veca)`, then the value of `lambda` is

A

`(3)/(7)`

B

7

C

3

D

`(7)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \), which is defined as the ratio of the projection of vector \( \vec{a} \) on vector \( \vec{b} \) to the projection of vector \( \vec{b} \) on vector \( \vec{a} \), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k} \] \[ \vec{b} = -2\hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Calculate the dot product \( \vec{a} \cdot \vec{b} \) The dot product is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2)(-2) + (-3)(2) + (6)(-1) \] \[ = -4 - 6 - 6 = -16 \] ### Step 3: Calculate the magnitudes of \( \vec{a} \) and \( \vec{b} \) **Magnitude of \( \vec{a} \)**: \[ |\vec{a}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] **Magnitude of \( \vec{b} \)**: \[ |\vec{b}| = \sqrt{(-2)^2 + (2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 4: Calculate the projections **Projection of \( \vec{a} \) on \( \vec{b} \)**: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} = \frac{-16}{3^2} \vec{b} = \frac{-16}{9} \vec{b} \] **Projection of \( \vec{b} \) on \( \vec{a} \)**: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} = \frac{-16}{7^2} \vec{a} = \frac{-16}{49} \vec{a} \] ### Step 5: Calculate \( \lambda \) Now, we can find \( \lambda \): \[ \lambda = \frac{\text{proj}_{\vec{b}} \vec{a}}{\text{proj}_{\vec{a}} \vec{b}} = \frac{\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}}{\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}} = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{a}} \cdot \frac{|\vec{a}|}{|\vec{b}|} \] Since \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \), they cancel out: \[ \lambda = \frac{|\vec{a}|}{|\vec{b}|} = \frac{7}{3} \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = \frac{7}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of veca on vecb

Find the projection of veca=2hati-hatj+hatk and vecb=hati-2hatj+hatk.

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If vecA= (2hati + 3hatj + 5hatk) and vecB = (hati+ 6hatj+6hatk) , then projection of vecA on vecB would be

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. Let veca=3hati-hatj, vecb=hati-2hatj, vec c=-hati+7hatj and vecp=veca+...

    Text Solution

    |

  2. If vecaxxvecb=vecaxxvec c,veca ne 0, then

    Text Solution

    |

  3. Given two vectors veca=2hati-3hatj+6hatk, vecb=-2hati+2hatj-hatk and...

    Text Solution

    |

  4. The area of parallelogram whose diagonals coincide with the following ...

    Text Solution

    |

  5. Let veca , vecb and vecc be three non-zero vectors such that veca + ve...

    Text Solution

    |

  6. If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

    Text Solution

    |

  7. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  8. The value of the following expression hati.(hatjxxhatk)+j.(hatixxhat...

    Text Solution

    |

  9. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  10. If |vecaxxvecb|=2,|veca.vecb|=2, then |veca|^(2)|vecb|^(2) is equal to

    Text Solution

    |

  11. |(vecaxxvecb)|^(2) is eqaul to

    Text Solution

    |

  12. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  13. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  14. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  15. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  16. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  17. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  18. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  19. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  20. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |