Home
Class 12
MATHS
If veca +vecb +vecc =vec0, |veca| =3 , ...

If ` veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7` , then the angle between ` veca and vecb` is

A

`(pi)/(6)`

B

`(2pi)/(3)`

C

`(5pi)/(3)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vectors \( \vec{a} \) and \( \vec{b} \) given the equation \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) and the magnitudes \( |\vec{a}| = 3 \), \( |\vec{b}| = 5 \), and \( |\vec{c}| = 7 \). ### Step-by-Step Solution: 1. **Rearranging the Equation**: \[ \vec{a} + \vec{b} = -\vec{c} \] This means that the vector sum of \( \vec{a} \) and \( \vec{b} \) is equal to the negative of \( \vec{c} \). **Hint**: Remember that the negative of a vector points in the opposite direction. 2. **Taking Magnitudes**: Taking the magnitude of both sides, we have: \[ |\vec{a} + \vec{b}| = |\vec{c}| \] Since \( |\vec{c}| = 7 \), we can write: \[ |\vec{a} + \vec{b}| = 7 \] **Hint**: The magnitude of a vector can be calculated using the Pythagorean theorem if the vectors are perpendicular. 3. **Using the Formula for Magnitude**: The magnitude of the sum of two vectors can be expressed as: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \] Substituting the known values: \[ 7^2 = 3^2 + 5^2 + 2 \vec{a} \cdot \vec{b} \] This simplifies to: \[ 49 = 9 + 25 + 2 \vec{a} \cdot \vec{b} \] **Hint**: Squaring the magnitudes helps eliminate the square root when calculating the magnitude of the sum. 4. **Calculating the Dot Product**: Now, calculate: \[ 49 = 34 + 2 \vec{a} \cdot \vec{b} \] Rearranging gives: \[ 2 \vec{a} \cdot \vec{b} = 49 - 34 = 15 \] Thus, \[ \vec{a} \cdot \vec{b} = \frac{15}{2} = 7.5 \] **Hint**: The dot product can also be expressed in terms of the angle between the vectors. 5. **Using the Dot Product Formula**: The dot product can also be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the magnitudes: \[ 7.5 = 3 \cdot 5 \cdot \cos \theta \] This simplifies to: \[ 7.5 = 15 \cos \theta \] Thus, \[ \cos \theta = \frac{7.5}{15} = \frac{1}{2} \] **Hint**: The cosine of an angle gives you a way to find the angle itself. 6. **Finding the Angle**: From \( \cos \theta = \frac{1}{2} \), we find: \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) \] This gives: \[ \theta = 60^\circ \] **Hint**: Remember the common angles and their cosines; \( \cos 60^\circ = \frac{1}{2} \). ### Final Answer: The angle between \( \vec{a} \) and \( \vec{b} \) is \( 60^\circ \) or \( \frac{\pi}{3} \) radians.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7 , then angle between veca and vecb is : a. (pi)/(2) b. (pi)/(3) c. (pi)/4 d. (pi)/(6)

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7 find the angle between veca and vecb

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

AAKASH INSTITUTE ENGLISH-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  2. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  3. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  4. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  5. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  6. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  7. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  8. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  9. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  10. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  11. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  12. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  13. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  14. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  15. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |

  16. If vecu=veca-vecb, vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvec...

    Text Solution

    |

  17. If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,v...

    Text Solution

    |

  18. A vector vecc of magnitude sqrt(7) which is perpendicular to the vecto...

    Text Solution

    |

  19. If veca=hati+hatj,vecb=hati-hatj, then veca.vecb=

    Text Solution

    |

  20. The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=h...

    Text Solution

    |